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Součástí sociologického studia sociální struk­
tury je problematika sociálních rozdílů, dife­
renciací. „Sociální strukturou rozumíme dě­
lení společnosti na skupiny a jejich vzájemné 
vztahy“ píše M. N. Rutkevič1.

V tomto stručném vyjádření je shrnuta 
společná podstata mnohých přístupů k pro­
blematice sociální struktury, které na tomto 
místě vědomě neuvádíme. Protože cílem na­
šeho výkladu bude kvantitativní (nebo lépe 
řečeno formální) hledisko analýzy sociálních 
rozdílů, mající svůj nezastupitelný význam 
pro empirické sledování veškerých aspektů 
sociální struktury (ale i pro další oblasti 
sociologického zkoumám), obrátíme naši po­
zornost nejprve k otázkám abstraktnější 
povahy, abychom ji později využili při vý­
kladu „obsahově bohatší“ tematiky.

1. Formální vymezení diferenciace

V souladu se sociologickou tradicí budeme 
chápat diferenciaci jako rozdělení zkoumané 
populace podle určitého kritéria, a to takové 
rozdělení, podle nějž je každý element zkou­
mané populace začleněn právě do jedné ze 
skupin vytvořených rozdělením.

Diferenciace tedy, zjednodušeně řečeno, 
představuje rozdělení odlišujících se elemen­
tů a uskupení těch elementů, které se podle 
daného kritéria neodlišují.

Formálně je diferenciace určitou ekviva­
lencí na zkoumané populaci. Označme tedy 
zkoumanou populaci symbolem P, její ele­
menty pak symbolem pí, i e I, tzn. P = 
= ^Pi\tei. Vzhledem k tomu, že zkoumáme 
vždy pouze konečné populace, je rovněž 
možný zápis

P = {Pl, P2, • - ■, Pr} •

Diferenciací D na množině P rozumíme tedy 
takový soubor podmnožin množiny P, který 
označíme d;,..., dn, pro nějž platí:

di n dm = 0 pro l ^ m, l, m =

= !,..✓,& a u di P .
1=1

Počet všech elementů, které leží v di, tj. 
počet všech takových p<edi, i = 1.........n, 
označíme |dj|. Zřejmě platí:

k
S |dzl = r • 

1=1

Upozorníme v této souvislosti na jednu pod­
statnou okolnost: to, že jsme elementy dife­
renciace — tj. soubor množin di,...,dk — 
očíslovali, neznamená v žádném případě je­
jich uspořádání. Jde o zjednodušenou formu 
zápisu \di\ieL, který by byl jistě přesnější. 
Avšak pro názornost volíme i v tomto pří­
padě diferenciace zjednodušený zápis jako 
v případě základní množiny, tj. zkoumané 
populace.

Znovu zopakujeme, že proces diferenciace 
neznamená nic jiného než přechod od základ­
ní množiny k určité množině jejích podmno­
žin, tedy proces seskupení určitých elementů 
základní množiny do elementů nové množi­
ny, diferenciace dané množiny.

Proto tedy diferenciace v našem významu 
znamená vlastně „zúžení“ původní diferen­
ciace dané množiny.

Co tím chceme říci ?
Uvažujeme takovou diferenciaci D na pů­

vodní množině P, pro niž platí, že každý 
element diferenciace obsahuje právě jeden 
element původní množiny. Jak se snadno 
přesvědčíme, takto vzniklá diferenciace vede 
opět k původní množině, což vyjádříme tak, 
že původní množina představuje nej bohatší 
diferenciaci na sobě samé. Naopak taková 
diferenciace, jejímž jediným prvkem je celá 
množina P, tzn. v dané diferenciaci neodli­
šujeme žádné elementy výchozí zkoumané 
populace, představuje nejchudší diferenciaci

* M. N. Rutkevič: Tendenciji razvltija sociálno) struktury sovetskogo obščestva. Moskva, Mysl 1975, 
s. 3.
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na dané populaci. Nejnižší možné zúženi vý­
chozí množiny vede tedy k nej bohatší dife­
renciaci, naopak její nej vyšší možné zúžení 
vede k nejchudší diferenciaci. Tyto dva sin­
gulární případy, které ohraničují celkový 
prostor diferenciaci zkoumané populace, ne­
jsou zajímavé, neboť kritéria, která je vyme­
zují, jsou vlastně popisem buď každého ele­
mentu dané populace nebo populace jako 
celku.2

Množinu všech diferenciací na množině P 
označíme D^Py Na takto definované mno­
žině je možno zavést celou řadu operací. Tak 
například je-li Di, Da e D^Py přičemž

Di = {^i,..., ^ , D2 = ^di,..., 2d^

a platí, že pro každé 1ďs, s = 1,..., h, exi­
stuje 2dm takové, že ^sc2^ (ve smyslu 
množinové inkluze na množině Py pak říká­
me, že Di je zjemněním Da a značíme 
DicDa- Platí-li DicDa, DacDi, značíme 
Di = Da a nazýváme takové diferenciace 
rovné.

Diferenciaci D3, jejíž elementy vzniknou 
jako průniky elementů diferenciací Di a Da, 
tj-

D3 = {tdi n 2ďi, 1ďi n 2ďž> • • •, ^i n
n 2dia,..., 1<Z;1 n 2di, • ■ •, ydn n 2dia^ , 

značíme jako Din Da 3 a nazýváme průni­
kem diferenciací Di a Da- Zřejmě platí, že 
Din DacDi, Din D2cD2.

Ve statistice často analyzujeme průnik 
dvou diferenciací pomocí tzv. kontingenční 
tabulky, tj. matice4

/ l1^! o 2di|, HJi n 2d2|, ■.., I^ďi n 2ď/2l \

l^iiH 2di|, \Ydun 2da\, ..., (h^n 2di2\

Pro další výklad bude velmi užitečné si 
uvědomit, že každá diferenciace množiny P 
generuje diferenciaci každého z elementů 
jiné diferenciace množiny P. Je-li Ydi jeden 
z elementů diferenciace Di, pak soubor pod­
množin pdi n 2di, Mi n 2d2,..., Mi n 2di^ 
představuje jeho diferenciaci, generovanou 
diferenciací Da.

Průnik dvou diferenciací Di n Da lze tedy 
analyzovat také tak, že představuje vlastně 
soubor li diferenciací množin 2di, Ma,... 
..., 2di2 ěi la diferenciací množin 1di, 
Ma,..., Mtv Vzniká tedy přirozeně otázka, 
nakolik diferencovaně působí diferenciace na 
celé množině a na jednotlivých elementech 
jiné diferenciace, jejíž zodpovězení by mohlo 
poskytnout cennou informaci o vztahu da­
ných diferenciací. Tím se však dostáváme 
k další části výkladu.

2 . Měřeni diferenciací a jejich vztahů

Nejprve dokážeme pomocné tvrzení.
Lemma 1; Nechť A je množina všech nezá­
porných «-členných posloupností takových, 
že součet jejich členů je roven 1. Označme 
dva obecné prvky této množiny

o = {^1, • • •, &»}, 6 — {^1? • • •, ^n} 
tzn. «; ž 0, b{ ^ 0, i = 1,..., n

a 2 a, = 5 6j = 1
í=i »=1

Potom funkce definovaná vztahem
n

g(,a> 6) = 1 — 5 min (at, 6ť) 
¿=1

je metrikou na A 5, jinými slovy A je me­
trickým prostorem s metrikou o.

2 Na tomto místě by mohla být položena závažná 
otázka, zda lze aplikovat kategorii diferenciace na 
veškeré objekty socialistické analýzy. Z toho, co 
bylo řečeno, totiž plyne, jak podstatný je výchozí 
pojem množiny pro označení zkoumané populace. 
Fakticky jde o situaci, kdy vycházíme z určité dife­
renciace (z té nejbohatší), dané chápáním zkou­
mané populace jako množiny odlišených elementů, 
kterou pouze „ochuzujeme“. Jde tedy ve skuteč­
nosti o určitý druh tautologie: při vymezení dife­
renciace fakticky předpokládáme určitý typ — na­
víc nejbohatší — diferenciace. Tento druh „tauto­
logie“ však není ničím neznámým: jeho diskusí 
bychom však překročili rámec našeho rozboru, 
který si neklade za cíl analyzovat zásadní anto- 
logické a gnoseologické otázky v tomto směru.

3 Je jisté, že D, je opět diferenciací. Pochopitelně 
se může stát, že některé z diferenciačních elementů
takto vzniklé diferenciace budou prázdné množiny,
ty však můžeme vyškrtnout a fakticky je neuva­
žovat. Přirozeně bychom se tomuto nedostatku 
mohli při definici průniku dvou diferenciací vy-

hnout tím, že bychom podmínku neprázdnosti nově 
vzniklých diferenciačních elementů vytyčili jako 
definiční podmínku.

4 Přitom připouštíme, že některá z čísel mohou 
být rovna nule — viz předchozí poznámku. Avšak 
platí, že v každém řádku i v každém sloupci musí 
být za předpokladu kladnosti všech hodnot

I1* I, Pd™|,
t = 1, ... ¡t, m = 1, ... li vždy alespoň jedno z čí­
sel nenulové.

1 Metrikou rozumíme takovou reálnou funkci, pro 
niž platí

a) e(a, t) = 0 — a — b
b) e(a, 6) = e(6,a)
c) e(a, 6) + p(b, c) ž j(a, c);

dále poznamenejme, že a = b znamená a, = b; pro 
i = 1..........n.

404



Dokažme nejprve, že p(a, b) = O o a = b. 
Vzhledem k tomu, že 

n n
1 — 5 min (a,, 6,) = 0 => 5 min (a<> M = 1. 

•=1 i=i
a dále, že 

n n
5 min (a«, 6t) ž 2 «i = 1
•=1 «=1

a

5 min (ať, 6<) ž 5 ^i = 1 , 
í=i i=i

musí zřejmě
min («;, bt) = at a min (a,-, bt) = bt, 

tedy platí at = bt pro i = 1,..., n, tedy 
a = b. V opačném případě je důkaz evi­
dentní.

Vztah p(a, 6) = @(6, a) plyne přímo z de­
finice metriky. Nyní přejdeme k důkazu 
tzv. trojúhelníkové nerovnosti. Nechť 
a = {ai,..., a„}, b = {ůi,..., 6»}, c = 
= {ci........cn} splňují podmínky dané věty, 
tj. jsou elementy A. Dokažme nejprve, že 
platí 

n
2 (min (ai; b^ + min (6(, c<) — 

i=i
n

— min (ať, cj)) > 5 bt • 
i=l

Označme symboly Jy,..., Je množiny přiro­
zených čísel od 1 do n, pro něž platí:

J\ : at 5 bl ^ Ct
J2 : at á Ct ž bt 
Je : bt ^ at < ct 
J4 : bt 5 ct ^ at 
J5 : Ct á ai = bt 
J6 : ct ^b( ^at 6

Pro i e Ji platí:
min (at, bt) + min (6<, c<) — min (a<, c<) = 

= at + bt — at = bt.

Pro i e Ji platí:
min (aí; bt) + min (bt, c<) — min (a<, c<) = 

= at + ct — at = c< ^ b<

(poslední nerovnost plyne z toho, že pro 
i e Ji platí ct S bt).

Pro i e J3 platí:
min (at, bt) + min (bt, ct) — min (at, ct) = 

= bt -V bt — at = 2b t — at ^bt

(poslední nerovnost plyne z toho, že pro 
1 e J3 platí bt g at neboli 26< g a< + bt).

Pro i e J4 platí:
min (at, bt) + min (bt, Ct) — min (a<, c<) = 

bt + bt — ct = 2bt — ct žbt
(poslední nerovnost plyne z toho, že pro 
»e J4 platí bt g ct neboli 26< g c< + bt).

Pro i e J5 platí:
min (at, bt) + min (bt, a) — min (at, ct) = 

at + ct — ct = at ^ bt
(poslední nerovnost plyne z toho, že pro 
i e J5 platí at ^ bt).

Pro i e Je platí:
min (at, bt) + min (b4, ct) — min (at, ct) = 

= bt + ct — c( = bt.
Dokázali jsme, že pro libovolné i platí 

min (at, bt) + min (bt, Ct) — min (at, ct) 2 bt 
a tedy 
n
5 min (a4, bt) + min (bt, ct) — min (a<, ct) ^ 
i=i

5 bt = 1
*=1 .

Úpravou poslední nerovnosti (přičtením 2 
k oběma stranám nerovnosti a jednoduchým 
převedením jednotlivých členů nerovnosti) 
dostáváme:

n n
1 — S min (at, b4) + 1 — 5 min (bt, ct) ž 

»=1 ť=i
n

>1—5 min (at, Ct) , 
í=i

čímž je důkaz proveden.
Dokázané lemma tedy umožňuje studovat 

prostor n-členných posloupností nezáporných 
čísel, jejichž součet je roven jedné, jako tzv. 
metrický prostor. Užitečné pro další úvahy 
bude ukázat, jak lze interpretovat metriku 
zavedenou lemmatem 1. Nechť aeA. Nechť 
je dána další n-členná posloupnost reálných 
čísel

n
x = {ai,..., zn} taková, že 5 zi = 0 

i=l
a a4 + $t > 0 pro t = 1,..., n.
Potom

b = a + x = {ai + ii...... an + x„} e A . 
Důkaz tohoto tvrzení je evidentní.

6 Pochopitelně, že rozklad indexů, který jsme 
uvedli, nemusí být disjunktní, tzn. že například 
platí-li O] = b, = ct, potom 1 g Jt i 1 g J^ Stejně 
tak některé z množin indexů mohou být prázdně,

což však není pro náš důkaz podstatné. Podstatné 
je, že každý index leží alespoň v jedné z uvedených 
množin indexů.
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Naopak dokážeme, že je-li dána jedna aeA, 
potom libovolný element 6 e A lze vyjádřit 
jako a + x, kde z je n-členná posloupnost 
reálných čišel s výše uvedenými vlastnostmi. 
Platí totiž, že bi = at + bi — at, i = 1........n, 

n
označme z< = 6< — o<. Zřejmě 2 ^ = ® a 

»-1
o< + xt = b( ž 0. Proto lze psát p(a, b) = 

n n
— 1—2 min (a<, M = 1 — 2 min (a<, a< + x<), 

»=1 i=l
n

kde 2 *í = 0, «< + z< ž 0. Označme Ji 
i» 1

množinu všech indexů takových, že x< ž 0, 
J2 pak množinu všech takových, že n < 0. 
Zřejmě Ji n Ji = 0 a Ji u J2 = {1, • • •, n}. 
Lze tedy psát:

1—2 min (a«> at + «<) =
•=1

= 1 — S «í — S (»< + xt) = 
iEJ1 iEJ 2

n
= 1 — at — 2 x* = — S xi .

»=1 ieJ» ieJi

Vzhledem k tomu, že 2 ^ = 0, platí, že 
í=i

5 xt = — 5 xi, tzn. lze psát
ieJ 1 teJi

p(a, 6) = 2 Xi = - 2 xt .
íeJ 1 ÍEJ 2

Zřejmě však X{ = bi — a< (viz výše), tudíž 
p(a, 6) = 2 (6ť — m) = — X (bt — at) = 

íeJ 1 *EJ 2
= 2 V>t — a.) = — 2 (6< — a,) = 

i; bižat i;bí<Oi
= S (a; — bt) . 

i; bt«u
(Z posledních vztahů mimo jiné vyplývá, že

p(a, 6) = | 2 |a< - ůi| ;
i=l

toto vyjádření metriky je „obvyklejší“ a 
představuje metriku na širším prostoru, než 
který jsme uvažovali, tj. na množině všech 
n-členných posloupností reálných čísel. V této 
formě bývá také tato metrika někdy užívána 
i v analýzách sociálních dat.) Metrika o(a, 6) 
znamená, o kolik celkem musíme zmenšit (či 
zvětšit) jednotlivé elementy at, pro něž 
a< > bi (at < bi), abychom „změnili a na 6“ 
(pochopitelně oč zmenšíme či zvětšíme pří­
slušné elementy a,, o to musíme zbylé ele­
menty at zvětšit či zmenšit).

Nechť například

« = (M), b= (i, i).
Potom

p(a, b) = 1 - (i + 4) = 1.

Abychom „přešli“ od a k b, musíme od ai 
odečíst |, kterou pochopitelně přičteme k «2:

(i ~ M + i) = (i, i) •
Zde je význam uvedené metriky zcela patrný.

Je zřejmé, že nej vyšší hodnoty, které 
může p(a, 6) dosáhnout, je 1. Je-li například 
a = (1, 0), b = (0, 1), potom p(a, b) = 1. 
Zřejmě lze veškeré dosavadní úvahy provést 
analogicky pro prostor n-členných nezápor­
ných reálných posloupností takových, že 
součet jejich členů je roven kladnému číslu s. 
V takovém případě má příslušná metrika 
tvar

g(a, 6) = 3 — 2 mm (a<> bt) =

= s 1 — 2 min 
í=i

Zpravidla budeme dané metriky používat 
v těch případech, kdy n-členné posloupnosti 
představují distribuci (procentuální zastou­
pení výskytu jednotlivých hodnot) určitého 
znaku na zkoumané populaci. V takových 
případech pak bude mít daná metrika tvar

p(a, b) = 100 — 2 min (a<> bt) .

Nechť Di, Di jsou dvě diferenciace populace 
P takové, že mají stejný počet elementů 
a navíc jsou tyto elementy uspořádány, nebo 
alespoň existuje jistá korespondence (jedno­
značné zobrazení množiny elementů Di na 
množinu elementů Di) dovolující je uspořá­
dat, tzn. lze psát

Di=W........ J*}, Di ={d13,...,^}.

Potom veličinou

1 lá-l\
1 — 2 min I1 , 

i=i \ r /
resp.

100 - 2 min (100 . -^L , 100 . —\

Í=1 \ T T /

lze ohodnotit vztah těchto dvou diferenciací, 
tj. jejich vzdálenost, kterou značíme 

e(Di(P), d2(P)) .
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Odtud je tedy zřejmé, že danou vzdálenost 
lze užít k měření vztahu dvou diferenciací 
na téže populaci pouze za určitých doplňu­
jících podmínek.

Poněkud příznivější situace je v případě, 
kdy chceme srovnat působení „téže“ dife­
renciace na dvou populacích. Pod pojmem 
„táž“ diferenciace rozumíme totožnost obsa­
hových kritérií (vlastně jistých predikátů, 
majících smysl na obou zkoumaných po­
pulacích).

Označme dané populace Py a Pa, počty 
jejich elementů ry a r2. Nechť D(Py) = 
= {^1........ ^nY D(P^ = (My............2d„}. 7

Potom veličina
QWPy), D(Pa» =

m n
tj. 5 5 Oyj = 1 .

i=l j=l

Dále označme symbolem

ai. = 5 °íí . aj = S aM 
,=1 i-1

a předpokládejme, že
ay. + 0 , a.j ^ 0 pro i = l,...,m. 

j = 1,..., n .
Potom platí:

m
5 «i 
.=1

1 — 5 min

= S«j 1
>=i L

m
— 5 min 

1

= 1—5 min 
t=i

íl1^! ]M 
\ ry ’ r2 /

m n
= 1 — 5 5 min (atj, ay. . a.j) .

*=1 j=i
případně v procentuálním vyjádření Dřikaa:

QWPy), D(P^ =

= 100 — 5 min 
i=l

|idť| |2di|\
100 . — , 100 . — , 

\ n r2 /
měří „rozdílnost diferenciace D“ na popula­
cích Py a Pí.

Odtud okamžitě plyne, že uvedená me­
trika poskytuje velmi jednoduchý, přitom 
však smysluplně interpretovatelný prostře­
dek komparace téže diferenciace na jistém 
souhrnu zkoumaných populací.

Avšak navíc ukazuje tato skutečnost ces­
tu, jak užít dosavadních výsledků k vytvo­
ření velmi přirozené míry závislosti dvou di­
ferenciací na téže populaci (bez přídavných 
podmínek, jak tomu bylo výše), o níž jsme 
se zmínili na konci úvodní části. Než však 
přistoupíme k výkladu tohoto postupu, do­
kážeme ještě jedno pomocné tvrzení.

Lemma 2: Nechť je dána uspořádaná po­
sloupnost m. n nezáporných čísel, resp. 
matice

«n> «12, • • •, «m \
s2i, a22, ..., a^n \

• I taková, že

®ml> ®m2> • • •, ®mn /

součet všech jejích elementů je roven jedné,

Zřejmě platí:
m ‘
5 «<. 1 — 5 min 

i=v

— 5 ®i. • min 
f=i

= 5 a<. — 5 S min («<.. a.j , a^) = 
t=i í=i 7=i

m n
= 1—5 5 min (atj, ay. . a.j) .

i=i >=i

(Využili jsme podmínky lemmatu, tj. že

5 ai.= 5 S °íí = 1) • 
t=l i=i j=y

Analogicky bychom dokázali, že

nim
5 a.j. I 1 — 5 min

>=i L <=i

= 1 — 5 5 min (ayj, ay. . aj) . 
í=i y=i

Tím je důkaz pomocného tvrzení proveden.
Z uvedeného lemmatu přímo plyne postup 

pro zavedení možné míry vztahu dvou dife­
renciací, které oproti předchozímu nyní jed­
nodušeji označíme jako

7 V tomto případě jsou zaručeny — vzhledem 
k obsahové totožnosti kritérií dané diferenciace — 
jak shodný počet elementů D (Pt) a D (PJ tak

i jejich vzájemná jednoznačná korespondence," kte­
rou vyjadřujeme příslušným očíslováním jednotli­
vých elementů D (PO a D (P,).
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Dl = {1^!, ...^d^, D2 = V2di„ .. 2á„} . 
Symbolem Di : 2dk označme diferenciaci 2dt 
(tedy elementu diferenciace D2, k = l,... 
..., n), která je vytvořena jako souhrn pod­
množin {kZi n 2dk) xd2 n 2dk,. .., Mm H 2dky 
analogicky pak definujeme

D2 : Mt =
= ydtn 2^, iatn 2d2,...?din 2d„}, 

l = 1,..., m .

Průnik dvou diferenciací tedy můžeme chá­
pat také tak, že je dána soustava diferenciací 
jedné diferenciace na elementech druhé dife­
renciace a naopak: jde buď o soustavu 
\Di : 2dky k = 1,..., n nebo o soustavu 
^D2 : ^tý l = 1,..., m. Vzniká zcela přiro­
zená otázka, jak diferencovaně působí jedna 
diferenciace na elementech druhé diferen­
ciace, „jak diferencuje jedna diferenciace 
druhou diferenciaci“.

Jde o to srovnat „charakter“ diferenciace 
Di a soustavy diferenciací Di : 2dk, k = 
= l,...,n, či diferenciace D2, a soustavy 
diferenciací D2 : Wz, Z = 1,..., m.

Diferenciace Di a každá ze soustavy dife­
renciací Di : 2dk splňují podmínku našich 
předchozích úvah, týkajících se aplikace výše 
uvedené metriky na komparaci působení 
„téže“ diferenciace na různých populacích, 
neboť Di a Di : 2dk jsou v tomto smyslu 
„tytéž diferenciace“.

Jejich vzdálenost lze měřit veličinou

p(Di, Di : 2djt) =

m
= 1 — S min 

i=i

W_ Mn 2dk\
r ’ |24| )

kde r značí počet prvků výchozí zkoumané 
populace. Tato metrika měří vlastně „dife­
renci“ v diferenciacích Di a Di : 2dk.

Je přirozené, že za celou „diferenci“ dife­
renciací Di a D2 budeme považovat součet 
„diferencí“ diferenciací Di a Di : 2dk, váže­

ný hodnotami —-— , k = 1,..., n, ci součet 

„diferencí“ diferenciací D2 a D2 : ^d;, váže­

« pfedpokládáme-li, že existuje taková diferen­
ciace výchozí populace P, jejíž elementy jsou uspo­
řádány tak, že ji lze zapsat ve tvaru

51.1= {3i.l}, 1 = 1, .... m, 4=1........n

(existuje tedy korespondence mezi elementy dife­
renciace D^Di a Di, 3), a platí-li

|»*| _ |i»|-|s<i*|
* = T» ’

ný hodnotami
1^1 7 1
—— , l = 1,..., m, tedy

veličinami

v 21M . ^Di, Di : 2dk) = 

k=l r

4=1 r [ í=i \ r

1^*1 /J’

či v e(D2, D2 : yz) =
i=i T

^^■fl-žmin (^, 

1=1 T [ Í=1 \ T

IMZ O_^íl \ 1
1^1 /J

Poslední lemma ukazuje, že oba výrazy jsou 
si rovné a lze je vyjádřit ve tvaru

A(Di, D^ =

Mn 2dí| pdzM^íl'
r ’ r2 ,

= 1 — S S min
Z=1 4=1

Plati-li
l^n 2^1 = |^,| . (2^1 

r r2

pro Z = 1.........m , 
k = 1,..., 7i ,

pak zřejmě A(Di, D2) = 0 (jde vlastně o kla­
sický případ statistické nezávislosti dvou 
jevů).9

A(Di, D2) tedy měří vzdálenost diferen­
ciace Di n D2 od jisté obecně hypotetické 
diferenciace (ve smyslu poznámky 8 diferen­
ciace Di . D^, pro jejíž elementy platí

1^1-Wl^4| = -------- - -------

pak takovou diferenciaci označíme Dt . Da.
Zřejmě pak platí A (Di, D3) = p (D, f) D2, D, . Da), 
neboli vztah dvou diferenciací Di a Da měříme 
vzdáleností průniku a součinu těchto dvou dife­
renciací.

• Ve smyslu předchozí poznámky lze v takovém 
případě psát Di Q Da = D, . Da.
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(označení opět ve smyslu poznámky 8). Jeho 
výhodou je, že jde o veličinu smysluplně 
interpretovatelnou: udává vlastně minimální 
nezbytně nutný počet změn (pohybů) v di­
ferenciaci Din Di, aby se „změnila“ v onu 
hypotetickou diferenciaci charakterizovanou 
výše uvedenou podmínkou (tj. v diferen­
ciaci Di . D^Y

Ve smyslu výše uvedených úvah lze říci, 
že A(Di, D2) je vzdáleností Din Do, od 
„jejich hypotetické nezávislosti“.10 Okamži­
tě se objevuje otázka, jakých maximálních 
hodnot může A(Di, D^ nabýt, tzn. pro jaké 
Di a D2 je Di n D^ nejvíce vzdáleno od 
„hypotetické diferenciace jejich nezávislosti“. 
Je zřejmé, že nemůže převýšit hodnotu 1 
(plyne to přímo z definice metriky o v lem­
matu 1). Je však jasné, že za předpokladu 
daných l1^], |2dí|, Z = l,...,m, fc = L... 
...,n, které jsou vesměs nenulové, nemůže 
A(Di, D2) nabýt hodnoty 1. Abychom určili 
tuto maximální hodnotu, uvedeme ještě dal­
ší lemma.

Lemma 3: Nechť je dána matice A nezá­
porných čísel '

’«11, «12, • • •> «Ire 
«21, «22, •••> a2n

^ml, O-mí, • • -, amn

taková, že
S «0 = 1- 

i= 1, .. m

Dále označme

«i. = S aij > aJ = S aij 
>=1 .-1

a předpokládejme, že

at. ^ O , a.j ^ O pro i = 1,..., m , 
j = 1,..., n .

Označme dále symbolem D(A) množinu všech 
nezáporných matic

'^n, $12, • • •, xln 
£21, ^22, • • • > x2n

^ml, xm2, • • *, xmn

takových, že

n m
X^j = «,. , 5 xi) ™ ^J í

>=1 ¿=1

obecný prvek L^A) značíme X. Dále označ­
me symbolem A* matici

^1. • ^,1» ®1. • ®.2) • • • , ^1. • ®.7i' 
®2. • ®.1> ®2. • #.2» • • •> ®2. • ^.n

^m. • a 1, am. . 0.2, • • • > «m. • «.n,

a symbolem S množinu všech matic reálných 
čísel

C12, .. ., Cm >
C22, ..., G^n

Cm2, • • •, Cmn

takových, že

n—1
Cfcn = — 2 Gm , k = 1,..., m — 1 

1=1
m— 1

Cml = — S Gn , Z = 1,. .., 71 — 1 
í=l

Cmn = . S C<j ,

3=1,..., n— 1

přičemž Ca ž —«i. . aj,, i = 1,..., m, j = 
= Obecný prvek S budeme zna­
čit G.

Nechť dále G e 8 je takový, že

2 |Cy| = max. 
t= 1,..., m

16 Index A (Di, D2) nabývá své nulové hodnoty 
v téže situaci jako celá řada dalších statisticky 
tradičních charakteristik vztahu dvou diferenciací 
(korelační koeficient, index kontingence atd.). 
Jeho výhoda spočívá nejen v tom, že je definován 
pro ,.nejobecnější“ typ sociologických proměnných 
(tzv. kvalitativních znaků), ale především v tom, 
že je velmi přirozeně interpretovatelný: hodnota, 
jíž nabývá, udává minimálně nutný počet změn 
v diferenciaci Di A D2, aby se Dt A D2 ,,změnila“ 
v Dt . D^. Technická přednost pak spočívá v jeho 
snadné vyčíslitelnosti.

Pro jeho výpočet je možné užít i druhý způsob 
jeho vyjádření, který plyne z výše uvedených úvah. 
Platí totiž, že

^.d^L sJ^A_l^íL^
(zde poznamenejme, že symboly | . .. | značí jednak 
absolutní hodnotu v běžném smyslu [ (je-li výraz, 
na nějž je symbol aplikován, číslem], jednak počet 
prvků [je-li výraz, na nějž je symbol aplikován, 
označením množiny]).
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Potom platí, že

1 — S min («<;, a«. • a./) 2 
»=1,.. .,m 
3 = 1,.. .,n

= max (1 — 2 min (Xtj, a^. . a,^ =
XeLW t=l,m

= 1 — 2 min (°f. • a.j + Ctj, a<- • a.^ ■
♦=1,.. •, m
3 = 1,..., n

Důkaz: Omezíme se pouze na základní body 
důkazu. Předně platí, že zl*eL(.4). Uvě­
domme si, že jak A, tak A* představují dvě 
řešení soustavy m + n rovnic

S ytj = «l, 
j=i
i = 1,..., m ,

S ytj = a.j , 
i = t
j = 1,..., n .

L\A) pak představuje soustavu všech nezá­
porných řešení daných rovnic (hodnost této 
soustavy rovnic je rovna (min (m, n) — 1)). 
Snadno si ověříme, že soustava S, která 
vznikne rozšířením soustavy 8 pominutím 
podmínky Ct, ž — a^ . a.j představuje sou­
stavu všech řešení rovnic:

IL «a = o, ^yn = o , 
>=i .=1

i = 1,..., m , j = 1,..., n ,

která je příslušnou homogenní soustavou 
výše uvedené soustavy rovnic. Na základě 
elementární věty řešení lineárních rovnic, 
totiž že obecné řešení nehomogenní soustavy 
lineárních rovnic je rovno součtu obecného 
řešení příslušné homogenní soustavy, tj. v na­
šem případě S, a jednoho partikulárního ře­
šení nehomogenní soustavy, na něž zvolíme 
A*, lze obecné řešení výše uvedené soustavy 
psát ve tvaru C + A*, kde C e 8. Podmínky 
Ctj ^ —at. . a.j vybírají z S pouze nezápor­
ná řešení. Platí tedy, že L(A) = A* + C, 
kde C e 8. Lze tedy psát

1 — S min (zť;, a<_ . a.j) = 
i=l,m

= 1 — 2 mm (°i. • a.j + C(j, a(. . aj) =

= i 5 l°i. • a.i + ^ °*- ■ ojI —
i*l....... m
3 = 1,..., n

= i S 1^/1 , kde CeS.
i=l,..., m
3=1........m

Je-li CeS takové, že
S \čij\ max , 

t= 1,..., m 
j=l, .... n

tvrzení lemmatu je zřejmé.
Nalezení Č e S není věc obecně jednodu­

chá: je nutné ji řešit postupy matematického 
programování. Poznamenejme konečně, že 
toto řešení nemusí být jediné. Diskuse těchto 
otázek by však překročila rámec našich úvah. 
Z lemmatu je okamžitě zřejmé, že maximální 
hodnota A(Di, Da) je rovna

2 S \quA,
1 = 1,... , m
A= 1,... , n 

kde 
n—1

qm = — S qtj , i = 1,..., rn — 1

m—1
qmj = — S qu. ý = i,..., n — 1 

»=i

qmn= S qu >
i=l, ..., m—1
3=1, . ...n—l 

přičemž

-i^l ■ I2dki

a 2 \qik\
1=1,..., m 
k = l n

je maximální.
Označme tuto hodnotu max A(Di, Da).

Definujeme dále vztahem

11 2) maxA(Di,D2)

tzv. index vztahu diferenciací Dx a D^.

Tento index má následující vlastnosti: 
— je definován pro kvalitativní znaky; 
— nabývá hodnot mezi nulou a jednou, při­

čemž je roven nule, jsou-li Dx a Da nezá­
vislé (ve statistickém smyslu) a roven 
jedné, jsou-li Dx a Da maximálně závislé 
(ve smyslu maximální vzdálenosti od pří­
padu statistické nezávislosti);11

11 V uvedeném smyslu je možno fakticky užít 
uvedeného postupu pro přirozenou definici mini­
málně statistické závislosti daných dvou diferen­

ciací Di a D2. Tyto úvahy by však opět překročily 
stanovený rámec našich úvah.
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— je smysluplně interprete vatelný: jeho hod­
nota označuje minimálně nezbytný počet 
změn v diferenciaci Z>i n D3, jimiž „pře­
jde“ tato diferenciace v hypotetickou di­
ferenciaci Dy . Da (charakterizující statis­
tickou nezávislost diferenciací Dy a Da), 
relativizovanou maximální hodnotou těch­
to změn;

— jeho jistou nevýhodou je, že pro svůj vý­
počet obecně vyžaduje poměrně náročné 
prostředky matematického programování.

Uvědomme si konečně, že v určitých přípa­
dech bude možné užít pouze indexu diferen­
ce diferenciací Dy a Da, totiž A(.Di, Da). Ne­
vystačíme s ním však tehdy, budeme-li chtít 
porovnat vztahy diferenciací Dy a Da na 
jedné straně a diferenciací D3 a Dy na straně 
druhé. Může se stát například, že

^Dy, Da) > A(P3, D^ ,
ale

b(Dy, Da) < d(D3, D^

apod. V takových případech pak je nutné 
užívat indexu vztahu diferenciací d.

„Procentuální“ vyjádření d lze snadno od­
vodit a nebudeme ho tudíž explicitně uvádět.

3. Příklady

Ukažme si nejprve, jak se výše uvedený po­
stup projevuje v nejjednodušším případě 
tzv. dichotomických diferenciací Dy a Da, 
tj. platí

Dy = (*¿1, 1d2) > Da = (2di, 2da).

Pro jednoduchost zápisu označme

l2dil l2d2|
  = a 1 ,   = a 2 r-------------- r

a dále analogicky

l^m 2di| l1^ n 2d2|
  = «11 ,  = «12 , 

t------------------------r

|id2n2dil l^n^l
-------”------- — °21 , ------- ~----------- a3a .

Hodnotu A(Z>i, £>2) lze určit přímým dosa­
zením do výše uvedeného vzorce:

A(Di, Da) = 1 — S min (a^, ay. . a.y) = 

y-1.2
= 1 S \°íj — °i. - a.A ■ 

.=1,2 
y-i, 2

Výpočet max A(Di, Da) není v tomto přípa­
dě obtížný.

Příslušná soustava matic S má v tomto 
konkrétním případě tvar

/ C -C\
\-G C)’ 

přičemž

max (—ui. . a.i, — a2. . a,2) 12 O ^

^ min («i. . a.a, aa. . a.y) .

Je tedy zřejmé, že

S |0j| 
í= 1, 2 
y=i,2

bude maximální právě tehdy, bude-li

C = max (min (ay. . a.2, a2. . a.y), 
——*max (—-ay. . a.y aa, • a.a)) — 
= max (min («i. . a.2, a3. . a.i), 

min (ay. . a.y, a3. . a.a)) .

Jo tedy jasné, že v tomto speciálním případě 

max A(Z>i, D3) =
= 2 . max (min (ay. . a.a, a3. . a.y), 

min (a.y, a.y, a3. . a.a)) .

Odtud je zřejmý obecný tvar d(Dy, Da) pro 
čtyřpolní tabulku:

d(Dy, Da) =

1 —(min(an,ai. . a 1) + min(ai2, ay. .a.a + 
+ min (a3y. a2 . -a.i) + min (a22, «2 . a.a))

2 . max (min («i. . a.a, a2. . a.i)> 
min (ai. . a.y, aa. . a.a))

V konkrétním příkladě, kde

3 ’ 6/
tzn.

117 5
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platí, že

MDi .D^=^, 

5 
max A(Z>i, D2 = -^ ,

a tudíž

^Dv D^ = 1.
u

Přes zdánlivě složitý tvar výpočtu 6^Dy, D^ 
není v tomto speciálním případě výpočet in­
dexu vztahu dvou diferenciací nikterak ob­
tížný.12

Ukažme v dalším, jaké zajímavé a svým 
způsobem nové pohledy zpracování dat tý­
kajících se sociální diferenciace přinášejí výše 
uvedené úvahy (omezíme se nyní pouze na 
aplikace uvedené metriky o).

V krátkosti ukážeme, jak lze těchto úvah 
využít k určitému typu rozboru vztahu vě­
kové a sociální diferenciace tak, jak je po­
skytují data ze Sčítání lidu ČSSR v r. 1970. 
Budeme vycházet z tabulky udávající sociál­
ně věkovou diferenciaci ekonomicky aktivní 
populace.13

Na základě tabulky 1 lze řešit celou řadu 
úloh. Jednou z nich je analyzovat vzdále­
nosti sociálního složení jednotlivých věko­
vých kohort od sociálního složení celé ekono­
micky aktivní populace.

Převedením výše uvedené tabulky na ta­
bulku sociálního složení jednotlivých věko­
vých kohort (tj. vydělením každého elemen­
tu řádku uvedené tabulky celkovým procen­
tem daného řádku), kterou zde explicitně ne­
uvádíme, a určením vzdáleností o takto 
vzniklých distribucí získáme tabulku 2.

Nebudeme na tomto místě provádět roz­
bor situace, kterou uváděná data vyjadřují. 
Omezíme se pouze na zdůraznění toho, že 
velmi výrazně obrážejí postupné historické 
proměny sociálního složení ekonomicky ak­
tivní populace. Zároveň naznačují i důležité 
aspekty reprodukčního cyklu sociální struk­
tury: starší generace jsou vzdáleny od prů­
měru sociální struktury (tj. celku), neboť 
jsou nositeli minulých forem sociální dife­
renciace, zatímco odchylky sociálního slože­
ní mladých věkových skupin od celkového 
sociálního složení vyjadřují, že jde o nositele 
nových tvarů, forem a hodnot sociální struk­
tury, tedy budoucnosti sociálně třídního slo­
žení společnosti. Přítomnost v tomto aspek-

Tabulka 1. Věkově sociální diferenciace ekonomicky aktivní populace ČSSR v r. 1970 ( %)

'ti ti

o 
co a

o
E >
E 5 

oO

Q 8

3 3

N

ti ti
5 1
C N

'ti

Q £

i i

o *5

>o o
á "ti 

~o o o
-5 ® s
►».cl °

'ti 
ti
o

8

=
s

15-20 5,1 0,2 0,7 1,1 0,2 0 0 7,3
20-30 15,1 0,7 8,2 1,1 0,5 0 0 25,6
30-40 10,5 0,6 10,0 1,4 0,4 0,1 0 23
40-50 11,4 0,7 7,4 2,3 0,5 0,2 0,1 22,6
50-60 6,7 0,4 7,3 1,7 0,3 0,2 0 16,6
60 + 2,1 0,2 0,9 1,4 0,1 0,2 0 4,9

Celkem 50,9 2,8 34,5 9 2 0,7 0,1 100 %

hodnoty a = A) těžko přirozeně interpretovatelná.12 Nebudeme se na tomto místě zabývat diskusí 
o vztahu různých indexů těsnosti vztahu dvou di- 
chotomických znaků a námi zavedeným indexem 
vztahu dvou diferenciací a. Poznamenejme,t pouze, 
že v uvedeném konkrétním případě se Yule-ův 
index

Q = — y, jeho interpretace je však (na rozdíl od

13 Zdůrazněme, že nám v tomto okamžiku nejde 
o diskusi zvolených hodnot sociální diferenciace 
(struktury), která je determinována znaky, jichž 
bylo v daném censu užito. Takové úvahy by totiž 
vybočily z rámce úvah, který jsme si vytkli.
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Tabulka 2. Vzdálenosti sociálního složení jednotli­
vých věkových kohort od sociálního slože­
ní ekonomicky aktivní populace ČSSR 
v r. 1970 (« %)

Q

15-20 25,1
20-30 8,1
30-40 9
40-50 2,3
50-60 11,2
60 + 24,2

tu reprezentují střední věkové skupiny oby­
vatelstva.

Nikoliv bez zajímavosti bude i tabulka 
uvádějící vzdálenosti sociálního složení jed­
notlivých věkových kohort, které plasticky 
dokreslí výše uvedená data (zde jde opět 
o velmi jednoduchou aplikaci metriky o za­
vedené v lemmatu 1, aplikovanou na jednot­
livé řádky příslušně upravené matice, resp. 
tabulky 1).

I analýzou této tabulky dostaneme zají­
mavé údaje o historických proměnách sociál­

ního složení ekonomicky aktivního obyvatel­
stva, které zdaleka nejsou patrné z tabulky. 
Vzdálenosti sociálního složení jednotlivých 
věkových skupin totiž obrážejí shody či roz­
díly sociální historie v životních drahách 
jednotlivých věkových skupin.

Na těchto dvou příkladech (tabulka 2 a 3) 
jsme chtěli alespoň v náznaku ukázat, jaký 
cenný (a přitom nikterak složitý) nástroj 
analýzy vztahu dvou diferenciací uvedené 
charakteristiky respektive postupy předsta­
vují. Přitom jde vesměs o sekundární kvan­
titativní charakteristiky, které mají zcela 
jasný „sociální obsah“ a v mnohých přípa­
dech mohou sloužit jako specifický typ indi­
kátorů sociálního vývoje. V tom také spočí­
vá jejich přednost před tradičními prostřed­
ky statistiky.14

4. Závěrečné poznámky

Uvedený přístup k analýze sociálních dife­
renciací vychází z nového — nebo lépe řeče­
no ne tak užívaného — pohledu na danou 
tematiku. Nechápe diferenciaci absolutně, 
nechce ji vyhlašovat za univerzální makro-

Tabulka 3. Vzdálenosti sociálního složení jednotlivých kohort ekonomicky aktivní populace USSR v roce 1970

15-20 20-30 30-40 40-50 50-60 60 +

15-20 22,4 34,3 24,9 35,6 27,7

20-30 13,7 8,6 19,1 29,7

30-40 10,8 5,5 27,9

40-50 11,6 22,5

50-60 25,6

« Chceme na tomto místě poukázat na to, že celá 
řada možností dalšího rozpracování zvoleného po­
stupu zůstala nevyužita. Předně je nutné zdůraznit, 
že veškeré naše dosavadní úvahy lze rozšířit na 
Ubovolný konečný počet diferencí (myslíme zde 
především zavedení A (Dt, D,, Ds, . . . Dn) čí 
a (Dt, D2, D3, . . . Dn) po konečné n).
Stejně tak zůstala prozatím stranou celá „statis­
tika“ příslušných charakteristik A a o- Pozname­
nejme dále, že veličinu a lze s úspěchem použít 
při konstrukci tzv. kauzálních modelů kvalitativních 
sociologických proměnných (viz Charvát F.: Model 
kauzality v soustavě kvalitativních sociologických

proměnných, Sociologický časopis 1, 1975).
S určitou adaptací lze zvolený postup užít i pro 
analýzu tzv. mobilitních tabulek (nový způsob za­
vedeni tzv. strukturální a čisté mobility, a to „so­
ciálně přirozený“ způsob zavedení).
Příslušná metrika 0 pak může sloužit jako základní 
prostředek pro aplikaci tzv. multidimenzionálního 
škálování či typologických procedur v případě 
komparace řady distribucí (diferenciaci na různých 
populacích) apod.
K těmto otázkám se vrátíme v dalších pracích, 
věnovaných rozpracování daného tematického po­
stupu.
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sociologickou kategorii, jako to činí tzv. stra- 
tifikační přístup, ale chápe ji dialekticky 
jako určitý projev integračních sociálních 
tendencí. Pochopitelně nemůže ve svém rám­
ci „řešit“ výchozí princip marxisticko-lenin- 
ské analýzy společenského vývoje soudobých 
historických podmínek, totiž rozhodující úlo­
hu tříd v sociálně ekonomickém vývoji sou­
dobých společností. Může však k jeho empi­
rickému vyjádření velmi konkrétně přispět, 
a tedy z něj vycházet a rozvíjet jej v empi­
rických formách vědeckého odrazu sociální 
skutečnosti.

Zdánlivě jednoduchá myšlenka charakte­
rizující průnik dvou diferenciací jako systém 
diferenciací daných jednou celkovou diferen­
ciací v elementech druhé diferenciace nejenže 
naplňuje obsahem nových pohledů běžné, 
rutinní analýzy tzv. kontingenčních tabulek, 
třídění druhého stupně sociologických znaků, 
ale kontrastuje s určujícími teoreticko-empi- 
rickými postuláty stratifikačních koncepcí 
(syntetizace dílčích statusů, skládání dílčích 
stratifikací v jediný sociální status ať již uži­
tím elementárních aritmetických či typolo- 
gických a jiných procedur). Umožňuje totiž 
nejen konstruovat přirozené charakteristiky 
vztahu dvou či více diferenciací, ale bezpro­
středně iniciuje i závažné problémy a otázky 
meritorního rázu, jako například otázka jaký 
je podíl dělnické třídy na proměnách sociální 
struktury dané společnosti, k jakým závě­
rům vede srovnání podílu jednotlivých tříd 
a sociálních skupin na procesech reprodukce 
sociálně třídní struktury,15 v jakých kon­
krétních podobách a měřítcích probíhá zá­
kladní proces sociálně třídního vývoje socia­
listické společnosti, totiž sbližování tříd a so­
ciálních skupin, a celou řadu dalších.

Proto je logickým závěrem této dílčí in­
formace požadavek vytvoření teorie sociální 
diferenciace, marxisticko-leninské teorie, kte­
rá by svými poznatky vydatně přispěla k ří­
zení složitých procesů výstavby socialistické 
a komunistické společnosti.

PeaioMe
XapaaT <!>.: Oó oahom na bo3moíkiimx iioaxoaob 
k ananasy connanbHMx pasjínuiH {ahíM^PbhiJhm}

B crarte npeHífle scero bboawtch t. Haa. «pac- 
CTOHHne Me®Ay AByMH ynopHAOseHHMMir Anýýe-

peHnnanHHMH C OAHH3KOBMM HHCJ10M a-lCMCHTOB» 
K3K

g(a, 6) — 1 — S min (aťb<) , 
»=1

fac a = {a,}" b {&*}”. ai ž O, bt à O,

S af = S bt = 1.
»=1 »=1

OTHomeHiie AByx oómnx gnýýepeHnHannů (Ka- 
qecTBCHHHX npnanaKOB) moíkho, ecTCCTBesHO, 
naMCpHTB BCJIHHHHOH, K0T0p3H BHpa>Ka6T, K3K 
AiK^epeHinipoBanno npoHBJíaeTca oahb AH<j)$e- 
pennnannH b aneMeuTax BTopoií anýýepeHuna- 
Ann.

IloKaaaHO, hto Mepoů stopo OTHOiueniiH moíkho 
CMMT3TB BejIHHHHy

A(Z)i, £>2) = 1— S S min (ay, a(. aj) , 
í=l>=l

r^e (ay) KOHTnreHTaJiBHaH raějinna AH<j>$epeH- 
nnannií Di n D^ n a(., a.,- hbjihiotch cootbct- 
CTByromMMit cyMMaMH no CTpoKaiiH n ctoji6a3m, 
i = 1, ..., m; / = 1 ... n. dajíce noKasano, hto 
M3KCMManbHaH B03M0>KHaH B6JIHHHH3 A(jDj, Dl) 
npn AaHHHx at., aj mom<ct 6htb ncnncjiena jihuib 
cpeACTBaini MaTeitaTHiecKoro nporpaMMHpoBa- 
HHH. Bboahtch T. Ha3. HHACKC OTHOUieHIIH AByX 
AiiýijiepeHnnanHii b bmac BeaiiniiHH

0< ’ 2) max M.D1, D^

KOTopan oónaaaeT ecTeciBeHHMMU h npeAnojia- 
raeMMMH CBOŽCTBaMii.

3aKJiK>’icHHe ct3tbh nocnHiACHO onpeAeJiennio 
<5 Aim neTMpexMcpHoii Taóannbi u npuBOASTCa 
oópaannKH ncnojibaoBainiH g paccToannn flan 
anannsa Aannux connanbHoii n BOspac raoH Auý- 
ýepcnunannn.

Summary

Charvát F.: Analysis oi the Structure of Social Dif­
ferences — One of the Posible Approaches

The paper begins with introducing the so-called 
“distance between two ordered differentiations 
having the same number of elements” as

m
g(a, 6)= 1 — S min (ay bf), where 

i=l
a = {«<}? , 6 = {bi}? , □< ^ 0 , 6| Ž 0,

m m
S at = 5 bt = 1 .
t=l i=l

15 K obecné teoretické formulaci těchto závažných 
otázek dynamiky sociálně třídní struktury viz F. 
Charvát: Dělnická třída v procesech reprodukce

sociální struktury socialistické společnosti: K ně­
kterým aspektům obecných a zvláštních momentů 
její vedoucí úlohy (Sociologický časopis 6/1976.).
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The relation between two common differentiations 
(qualitative variables) can naturally be measured 
in terms of the value indicating the differentiated 
operation of one differentiation in the elements of 
another differentiation.

It has been proved that the quantity
m n

J(Z>1, Ss) = 1 — S S min (ay, a(. . ay) , 
»=U=i

where (ay) contingency table of differentiations Dy 
and Da and a«., ay are the respective sums of rows 
and columns, i = 1, .....  m, j = 1, .... n, can be
taken for the measure of this relation.

The paper goes on to prove that, while ch., a.j 
are given, the maximum possible value Di, Da is 
generally calculable only by applying the means of 
mathematical programming. The so-called index 
of the relation between two differentiations is in­
troduced as the quantity

je/n nt 21(Z>i, Pg)dlDi, D2) = ^ ^Di, DzV

having natural and expected properties.
In conclusion the paper is concerned with the 

determination of 6 for a four-field table and with 
examples of the application of g of distance in 
analyzing data of social and age differentiation.
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