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Základní typy znaků v práci sociologa jsou 
tři: nominální, ordinální a kardinální. Pro 
nominální a kardinální znaky máme k dispo­
zici řadu statistických charakteristik, které 
lze dobře využít pro analytickou práci s daty, 
alo pro ordinální data mámo analytických 
prostředků daleko méně. Ordinální data, to 
jest realizace proměnných, jejichž stavy jsou 
nekvantifikovatolné, ale uspořádané, jsou vel­
mi častá právě v sociologii a ve společenských 
vědách vůbec. Proto statistická metodologie 
práce s těmito daty je rozvíjena převážně 
právě ve společenských vědách nebo pod je­
jich tlakem.

Úkolem této stati je především uvést jed­
noduchý model pro práci s ordinálními daty, 
jenž umožňuje zavést smysluplně interpreto- 
vatelné míry pro tato data a zároveň umož­
ňuje hlubší pohled na tyto míry uvedením 
jejich paralel pro data nominální a kardinál­
ní. V článku jo popsán obecný postup při za­
vádění měr pro různé typy dat a jo zde uká­
záno, že dobře známé míry pro nominální 
data (opakovači poměr, variační poměr, mo­
dus, koeficienty 2, t) a míry pro číselná data 
(průměr, rozptyl, korelační poměr) plynou 
logicky z tohoto modelu. 0 podobném mode­
lu uvažovali (i když s důležitou rozdílností) 
Light a Margolin [1971], když zaváděli svou 
metodu CATANOVA pro testování shody 
rozložení nominálního znaku v různých po­
pulacích. V této stati není řešen problém vzá­
jemné, či jednostranné (symetrické, či asy­
metrické) statistické závislosti dvou ordinál­
ních znaků; k tomu viz [Řehák - Řeháková 
1975], Přístup použitý zde pro ordinální zna­
ky naznačuje také možnost vyvinout ordinál­
ní analýzu rozptylu paralelně s ANOVA (ana-

1 Požadavek citlivosti na různé typy transformací jo
dán Členěním kardinálních proměnných vzhledem k jed­
noznačnosti určení číselných hodnot znaku. Různé míry
jsou pak různě citlivé na změny: rozptyl se nemění
s posunutím počátku číselné stupnice, korelační poměr

lýza rozptylu pro normálně rozložené číselné 
veličiny) a s CATzlNOVA [Light - Margolin 
1971], resp. s analýzou založenou na rozkladu 
entropií [Kullback 1967],

1. Úvod

Tři základní typy dat jsou dobře známy kaž­
dému výzkumníkovi.

Nominální znak je model vlastnosti, jejíž 
stavy tvoří třídy ekvivalence; u znaku ne­
uvažujeme žádné relace na množině jeho hod­
not. Nominální úroveň nepředpokládá žádné 
uspořádání, tím méně pak jakoukoli kvanti­
fikaci svých hodnot. Všechny míry, které 
pro tento znak odvozujeme, musí být inva­
riantní k libovolným permutacím jeho hod­
not. nesmějí se měnit při jakémkoli označení 
či popisu pořadí hodnot.

Kardinální znak je model vlastnosti, jejíž 
stavy jsou uspořádány, a navíc nám tato 
vlastnost a naše znalosti umožňují přiřazo­
vat jednotlivým stavům interpretovatclná 
čísla. Zobrazení převádějící stavy vlastnosti 
do číselné množiny umožňuje také číselné 
zpracování měr vycházejících z těchto dat 
a citlivých na změny číselných hodnot 
znaku.1

Ordinální znak je model, který odráží uspo­
řádání množiny stavů vlastnosti. Hodnoty 
znaku jsou úplně (lineárně) uspořádány. Pro­
to míry pro tento typ by měly být citlivé 
k permutacím hodnot znaku, tj. ke změnám 
jejich uspořádání. Kdybychom měli hodnoty 
znaku označeny číselně, pak míry založené 
na ordinalitě jsou na číselné změny necitlivé, 
pokud je zachováno uspořádání; míry vychá­
zející z ordinálního modelu jsou pro číselná 

se nemění s libovolnou lineární transformací, korelační 
koeficient sc nemění s libovolnými kladnými lineárními 
transformacemi obou znaků a v případě, že obě lineární 
transformace jsou záporné.
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data invariantní vzhledem k libovolné ros­
toucí transformaci.

Toto základní dělení pochází od Stcvcnse 
[1959], Podrobnější typologii uvádí Řehák 
[1972], '

Ordinální znaky jsou předmětem dlouho­
dobé diskuse a zájmu ve společenských vě­
dách. Je to zřejmě vyvoláno tím, že jejich 
výskyt je zcela běžný v každém sociologic­
kém výzkumu.

V současné době lze nalézt v literatuře tři 
přístupy k ordi náhlím datům:

1. Kritika a argumentace proti používání 
ordinálního modelu; rozbor nepoužitelnosti, 
nevhodnosti a neinformativnosti těchto dat 
ve společenskovědním výzkumu (např. Wil­
son [1969; 1971]).

2. Zkoumání vlastností pseudokvantifika- 
ce, resp. jednoduchého skórování pořadím 
kategorie a následného použití technik ana­
lýzy pro kardinální znaky. Jde tu o zkoumá­
ní robustnosti ordinálního modelu směrem 
k libovolným rostoucím transformacím zavá­
dějícím číselné modely. Důležité výsledky 
tohoto typu uvádí Labowitz [1967]. Pro tyto 
úvahy je důležitý také výsledek z práce 
Goodovy [1972].

3. Snaha vypracovat speciální míry pro 
ordinální data, jmenovitě pro ordinální ko­
relaci a asociaci (odkazy na literaturu k to­
muto tématu lze nalézt v práci Řeháka a Ře­
hákové [1975]), a pro testování hypotéz (li­
teratura k tomuto oboru je velice bohatá).

Všechny tři přístupy jsou velice důležité 
pro rozvoj metodologie sociologické práce. 
Tato stať má být příspěvkem ke třetímu 
přístupu, a to především systematickým za­
vedením měr variability a analogie ke kore­
lačnímu poměru.

Kritika ordinálních měr neobstojí, pokud 
bude vedena z pohledu dat číselných nebo 
dat kvalitativních. Ordinální znaky tvoří ve­
lice širokou samostatnou (a též uvnitř dife­
rencovanou) kategorii znaku. Model ordinál­
ního znaku nelze prostě vyškrtnout z vý-

3 Nelze např. přijmout tvrzení, že ordinální znak je 
méně informativní než kardinální, aniž prostudujeme 
vlastnost, již znak reprezentuje, aniž rozebereme obsah 
znaku. Kardinální znak je informativnější pro kvanti- 
fikovatelné vlastnosti, u nichž je adekvátní kvantifikace 
známa. Je tedy nutno brát v úvahu strukturu vlast­
ností (vztahy mezi jejich stavy), ale též naše možnosti
kvantitativní strukturu odhalit. Jestliže vlastnost sama 
je pouze ordinální, pak její kvantifikace jo pouze apro­
ximací, a tudíž znepřesněním informace; kardinální znak

zbroje společenského výzkumu.2 Rozhodnutí 
pro typ znaku či pro konečné skórování je 
vždy závislé na zkušenosti s danou vlast­
ností, na cílech analýzy a na hlediscích mini­
malizace chyb i výzkumných nákladů. Do­
mnívám se, že ač můžeme často bez velkého 
nebezpečí používat skórovací metody pro or­
dinální data [Labowitz 1967], má smysl a je 
nejen užitečné, ale i nutné rozpracovávat or­
dinální model pro data jako samostatný, na 
kvantifikaci nezávislý typ.

2. Obecný model pro zavedení statistických 
charakteristik . Ap

A. Základním pojmem v analýze dat je po­
jem variability rozložení dat — rozložení 
prvků populace vzhledem k hodnotám dané­
ho znaku. Heterogenita populace ti vzhledem 
k danému znaku A je měřena podle toho, jak 
jsou si prvky populace nepodobné.

Označíme hodnoty znaku A = {a} a za­
vedeme funkci d\a, 6) na množině všech dvo­
jic hodnot znaku. Tato funkce bude charak­
terizovat vzdálenost,3 resp. nepodobnost, 
rozdílnost těchto dvou hodnot.4 -Je jasné, že 
zavedení funkce d(a, b) závisí na typu znaku, 
který zkoumáme, že nepodobnost je různá 
u nominálních, u ordinálních a u kardinálních 
dat. A právě vhodné určení funkce d\a, b) 
vede k vhodné charakterizaci typu znaku 
a k vhodným mírám. Zde uvedeme pouze 
velice slabá omezení a obecné požadavky na 
tuto funkci:
1. d^a, a) = 0 pro všechna a a všechny zna­

ky A;
2. d(a, Ď) = d(6, a) pro všechny dvojice (<y ě) 

všech znaků A;
3. d(a, b) ŽO pro všechny dvojice a, b eA; 
4. funkce d\a, í) zachovává relaci „nepodob­

nosti“, tj., je-li delinována taková relace 
nepodobnosti na množino všech dvojic, 
pak jsou-li si (a, 6) podobnější než (a', 6'), 
d^a, b) A d^a', b’\

v takovém případě může přinášet falešnou (i když zdán­
livě bohatou) informaci.

• V tomto článku nemáme na mysli matematický 
pojem vzdálenosti, ale rozdílnost znaku nebo dvou je­
dinců vzhledem ke škálo znaku (k oboru hodnot znaku).

4 Tato funkce je zároveň mírou nepodobnosti, rozdíl­
nosti či vzdálenosti dvou prvků z populace n, z nichž 
u prvního ee vyskytuje hodnota a a u druhého hod­
nota b.
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Tyto heuristické požadavky mají jednodu­
chou a přirozenou interpretaci. Dále si prů­
běžně s rozvíjením postupu ukážeme na pří­
kladech, jak lze tyto pojmy nalézt u zavede­
ných měr pro znaky nominální a kardinální.
Příklad 1

A = {ai, . .......... «k} je nominální znak o K kate­
goriích.
Zavedeme
(1) dlát, Oj) = 0 pro všechna i 

d(«i, aj) = 1 pro všechna i 4= 3
Je-li A například znak kouření, mající dvě hodnoty 
(«1 = kuřák, až — nekuřák), pak pro každé dva 
jedince zavedeme <1—6 (jsou-li oba kuřáci či oba 
nekuřáci) a d — 1 (je-li jeden kuřák a jeden neku­
řák). Toto přirozené skóre nepodobnosti je tedy 
indikátorovou funkcí různých hodnot na množině 
dvojic.

Příklad 2
X = {»} je kardinální znak.
Položíme
(2) ¿(z, y) = (a — y)2 pro všechna x, y
Jestliže jo např. X = {cena ropy} a rr je soubor 
producentů ropy, pak (x — y)2 je mírou podob­
nosti dvojice. Takto zavedená funkce jo velice vý­
hodná (i když možností je více) a vede k metodě 
nej menších čtverců a k rozkladům analýzy roz­
ptylu.

B. Přirozenou mírou rozptýlení pro popu­
laci ti je očekávané skóre d pro všechny dvo­
jice5 z populace.  Je-li {/<} rozložení pravdě­
podobnosti na hodnotách znaku A = {«¿}, 
pak výběr dvojice hodnot («;, a;) z populace 
n, který odpovídá výběru s opakováním, 
resp. cestě nezávislého opakování realizace 
znaku A, má pravděpodobnost

6

P [vybereme («;, a,)] = /< ./; pro lib. i, j

Očekávaná hodnota d(a, 6) je tedy dána

(3) d = 2 Yfifjd(at,aj)
i 3

Tato míra má velice jednoduchou interpre­
taci: je to průměrná nepodobnost náhodně 
vybrané dvojice prvků z populace.

Základní vlastnosti:
a) Je-li í/=0, pak jsou všechna/;/;(/(«;,«,■)= 

= 0, což dále značí, že pro nenulové skóre 
d\cH, a,-) musí být váhy /;,/; nulové, a tudíž 
všechny prvky populace musí být soustředě­
ny tak, že mají nulová </(«, bý Ve většině 
případů bude d(a, ů) 0 ekvivalentní s a = 
= b; v těchto případech půjde o stoprocent­
ní statistickou homogennost — všechny prvky 
populace musí mít stejné hodnoty znaku.

b) d je tím větší, čím větší jsou /< u vzdá­
lenějších prvků populace.
Příklad 1 tpokr.'!
Zavedeme-li pro Ahodnotový znak A rozložení 
četností {/i,/z, . . .,/k}, pak aplikace definice (1) 
ve vzorci (3) dává
(4) d = 1 — Tjp

Dostali jsme známý opakovači poměr jako míru 
variability pro nominální znaky. Tato míra byla za­
vedena C. Ginim už v roce 1938 (odkaz: [Light • 
- Margolin 1971]).

d jo relativní počet dvojic populace, které ne­
patří do stejné kategorie; pro d = 0 musí být 
S/i2 = 1 a to není možné jinak, než žo pro jedno i 
jo /< = 1, což znamená, že populace je soustředěna 
v jedné kategorii znaku.
Příklad 2 tpokr.')
Pro kardinální znak, u něhož so vyskytují v popu­
laci hodnoty X = {zd, zavedeme (3) pomocí (2):
(5) d-S^,-»,)«

= 2^/^ —A)2

= 2 var X 
= 2a2

X zde značí aritmetický průměr proměnné X a a2 
jo běžné označení pro rozptyl (např. [Rodriguez 
1945]).

Nulová hodnota d vzniká právě tehdy, když 
všechny nenulové rozdíly (xt— xp mají nulové 
váhy p,J), tedy právě tehdy, když pro jednu z hod­
not xi máme fi — 1 a žádná jiná hodnota so v po­
pulaci už nevyskytujo.

C. Pro každou hodnotu a znaku A -- {aj} 
možno zavést průměrnou vzdálenost všech 
prvků populace od této hodnoty:
(6) d* = ^Jid^a,, aj

6 Model může předpokládat bud všechny různé dvo­
jice prvků konečné populace n, nebo všechny dvojice 
prvků (včetně opakování). Dálo se musíme rozhodnout, 
zda budeme brát všechny dvojice i vzhledem k uspořá­
dání, nebo pouze dvojice bez ohledu na uspořádání. 
Rozdíly v postupu u různých přístupů nejsou nijak pod­
statné a je pouze nutné se pro jeden z nich rozhodnout 
a konzistentně se ho držet. V dalším textu předpoklá­
dáme přístup výběru s opakováním, takže dvojice lišící 
se uspořádáním jsou považovány za různé. Úvahy v této

stati so týkají konečných znaků. Rozšíření na spojité 
znaky a nekonečné znaky diskrétní jo přímočaré. Dů­
vodem pro naše dobrovolné omezení je jednak to, že 
takový případ jo vo výzkumu nejčastější, a jednak 
snaha vyhnout eo značení pomocí integrálů, se kterými 
není většina sociologů dobře obeznámena.

6 Jinak vyjádřeno: prULmérná nepodobnost, rozdílnost, 
pro všechny možné dvojice, které model připouští. Též mů­
žeme říci, žo se jedná o míru rozptýlení daného statistic­
kého lozložení.
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Tento ukazatel je mírou centrality a pro po­
pulaci n. čím menší je d*, tím menší je prů­
měrná vzdálenost všech prvků od této hod­
noty. To a, pro něž je d* nejmenší, proto 
nazveme středem loentrem^ rozložení znaku A 
pro populaci 7t.

Je vidět, že d můžeme vyjádřit

(7) d = ^d^

Příklad 1 (pokr.)
Pro nominální znak jo
(8) ďe = 1 --/„
a minima jo dosaženo pro a, pro něž je /^ maxi­
mální, to jest pro modus. Dostáváme tak modus 
jako střed rozložení pro nominální znaky.

Příklad 2 Ipokry
Pro kardinální znak je

ti = S/tfo —• íc)2
a tato hodnota je minimalizována pro aritmetický 
průměr

X = Xjtxt
který je tak středem rozložení. Toto běžné zavedení 
vsak je přesné pouze pro případ, že X chápeme 
jako spojitý znak, u něhož je X přípustnou hod­
notou. Jde-li o diskrétní hodnoty xt (například celo­
číselné proměnné), pak za střed rozložení jo nutno 
vzít celé číslo nejbližsí k aritmetickému průměru (k&- 
okrouhlené X, jsou-li xt celočíselná).7 Pro toto 
číslo X* platí, že jeho míra centrality dž» je noj- 
monší mezi všemi hodnotami d^.

D. Minimální hodnotu d*, připadající stře­
du rozložení, můžeme vzít též za míru roz­
ptýlení; tato míra měří koncentrovanost ko­
lem středu a.

(9) d* = min d„

= Hfid^at, a)

Míra vyjadřuje průměrnou nepodobnost, 
vzdálenost všech prvků od středu.

Její vlastnosti:
a) je nulová právě tehdy, když všechny 

znaky mají nulovou vzdálenost od a;
b) jo tím větší, čím větší četnosti mají 

hodnoty vzdálenější od středu rozložení.

Příklad 1 Ipokr.)
Pro nominální znak je
(10) d* = 1—fMoa
kdo Jmo4 je četnost roodální kategorie v rozložení 
(/i); d* jo známý variační poměr.

Přiklad 2 {pokr.)
Pro kardinální spojitý znak X je
(11) d* = a2 — ^Jdxi — A)2
kdo A jo aritmetický průměr.

Pro diskrétní X — {«<}, u něhož nepřipouštíme 
žádné hodnoty mimo {$(}, jo
(12) d* = 'Lj^xi -X*^

- S/t^-A^-h (A — X*)2
- - a2 + (A — X*)2

kde X* je celé číslo nejblížší k A.

E. Dále se budeme zabývat rozkladeni po­
pulace na oblasti a explanační silou rozkladu. 
Předcházející míry měly především deskrip- 
tivní roli. Variabilita však je základní pojem 
pro statistické zkoumání empiricky se proje­
vivších kauzálních vztahů a pro explanační 
cíle analýzy. Běžný postup spočívá v tom, 
že se spočítá zvlášť variabilita v každé ob­
lasti, poté se spočítá průměrná variabilita 
uvnitř těchto oblasti a nakonec se porovná 
s celkovou variabilitou v populaci. Tento po­
stup je základem pro zavedení indexu aso­
ciace rozkladové proměnné a daného zna­
ku A. Tento index můžeme nazvat obecně 
indexem explanativní síly rozkladu. Běžně se 
konstruuje jako relativní redukce variability:

(13) ,

(variabilita \ /průměrná variabi- 
v celé populaci/ ’ lita v oblastech 

variabilita v celé populaci

Obecné vlastnosti indexu:8 
t

a) Index je definován jen pro případy, kdy 
existuje nenulová variabilita v celé populaci.

b) Jestliže variabilita v oblastech vymizí, 
pak index jo roven jedné.

c) Jestliže variabilita je stejná ve všech 
oblastech a je stejná jako variabilita v celé

7 Tím ovšem nemá být řečeno, že aritmetický průměr
je špatná míra pro diskrétní proměnné. Také ho v této 
souvislosti běžně používáme, a i když jeho použití ne­
musí být vždy zcela „čisté“, máme pro ne řadu dobrých 
důvodů. Rozdíl mezi aritmetickým průměrem a za­
okrouhleným aritmetickým průměrem ovšem vyvstane 
jasně při predikční interpretaci tohoto modelu.

8 Vhodnost indexu (13) zde nebudeme hodnotit obec­
ně,• jeho vlastnosti nutno posoudit zvlášť pro každé 
d(a, b). Záleží na tom, zda průměrná variabilita je nutně 
menší než celková variabilita, na tom, jaká je intepre- 
tace d^a, ů), použité míry variability apod.
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(13a) d' = 

nebo

(13b) 8" =

populaci, pak jo index roven nulo, Index je 
v praxi aplikován jak pro d, tak pro d*.

Zaveďme pro další úvahy jednotná ozna­
čení:
A = {«i} je znak s hodnotami a<.
/í je pravděpodobnost výskytu hodnoty ot 
v populaci ti.
R = {7?;} je rozkladový znak, který dělí po­
pulaci na oblasti m.

Další označení:
/í/r je podmíněná pravděpodobnost výskytu 
hodnoty «/ v rté oblasti 7tr rozkladu R.
gr je rozložení na znaku R, tj. relativní čet­
nost příslušná k hodnotě Rr rozkladového 
znaku.

Index (13) pak lze přepsat jako

<1^ — 'Sgrd^AIRi — r) 
d(A)

d*(A)  — Sgrd*(^/7? i- — r) 
d*(H)

kde d(Zl) odkazuje ka a d(A/R{ = r) odka­
zuje k 7tr.

Příklad 1 (pokr.) . .
Je-li A nominální a R rozklad, pak aplikace míry 
(4) na (13), tj. určení (13a), vede k Wallisovu 
koeficientu tair; aplikace míry (8), tj. použití vzor­
ce (13b), vede k Xair (k tomu viz podrobně [Ře­
hák - Řeháková 1973], kde jsou též reference na 
původní práce), j r«

Příklad 2 ^pokr.^ "
Pro kardinální znak X, který považujeme za spo­
jitý, vede aplikace (13a) i (13b) ke korelačnímu 
porniru rjx,R; při diskrétním chápání číselného zna­
ku bychom museli provést korekce všech používa­
ných rozptylů v duchu vzorce (12).9

F. V úvahu přichází také tento predikční 
model:

1. Určujeme hodnotu znaku A náhodně vy­
braného prvku z populace tc podle pravidla 
založeného na {/»}^t, tj. na pravděpo­
dobnostním rozložení na hodnotách znaku A.

2. Je-li dáno R a u náhodně vybraného 
prvku známe jeho třídu Rr (oblast %r), pak 
určujeme hodnotu znaku pro tento prvek po­
mocí rozložení Viir^v

3. Kvalitu predikce (přiřazené hodnoty) 
vyjadřuje pro vybraný prvek funkce d\a, 6), 
kde a je hodnota přiřazená podle predikčního 
pravidla a b je skutečná hodnota.

4. Očekávaná chyba predikce (průměrná 
chyba) je mírou variability populace. Cím 
neurčitější je predikce, tím rozptýlenější je 
populace.

5. Relativní úbytek chyby predikce při 
znalosti a bez znalosti hodnoty Rr je mírou 
informačního přínosu znaku R pro znak A 
a mírou predikční síly znaku R pro znak .1 
vzhledem k danému statistickému rozložení. 
Zároveň může být tato míra chápána jako 
míra asymetrické statistické závislosti A na 
R. Takto vzniklé míry se nazývají PRE-míry 
asociace (proportional reduction in crror).

Predikční pravidla můžeme uvést dvě:
1. proporcionální predikce: hodnotu přiřa­

díme náhodně, s pravděpodobnostmi stejný­
mi, jaké jsou pravděpodobnosti rozložení 
znaku;

II. optimální predikce: přiřazenou hodno­
tou je optimální prediktor, tj. hodnota, která 
minimalizuje chybu.

Predikční chyba d(a, b), kterou můžeme 
chápat také jako ztrátovou funkci predikč­
ního rozhodnutí, jo určena podle typu znaku 
a cíle predikčního rozhodování. Pro statis­
tické rozhodování můžeme zavést funkci 
d(a, b) obdobně jako ve výše popsaném 
modelu.

Hodnota d ve vzorci (3) ukazuje kvalitu 
pravidla I, d*  ve vzorci (9) ukazuje kvalitu 
pravidla II. Střed rozložení je optimálním 
prediktorem, index (13a) je redukcí predikč­
ní chyby pro d a (13b) pro d*  při znalosti R.

Příklad 1 a 2 (pokr.)
Výše zavoděná skóre nepodobnosti d^a, 6) pro no­
minální a kardinální znaky lze použít stejně dobře 
jako ukazatele kvality predikce. Všechny odvozené 
míry pak mají predikční interpretace a koeficienty 
statistické závislosti mají PRE-interpretace.

3. Ordinální znaky

Ordinální znak vzniká jako přiřazení hodnot 
z úplně uspořádané množiny A ke stavům 
vlastnosti A, tj. zobrazení A na A. Ve vý-

• Zde rozebíráme modely, a proto jo třeba rozlišovat můžeme takovou míru korekce u diskrétních znaků za-
modol spojitý a diskrétní. V praxi výzkumu však zřejmě nedbat, neboť numerická hodnota se mění nepatrně.
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zkumné praxi ordinální znaky většinou ana­
lyzujeme tak, že používáme techniky pro 
znaky nominální (chí-kvadrát-test), nebo tak. 
že používáme skórování kategorií a techniky 
pro číselné proměnné. Výjimkou z tohoto po­
stupu jsou koeficienty ordinální asociace.

Dříve než navrhneme vlastní popisné míry 
pro ordinální data, všimneme si některých 
základních vlastností a tím i vnitřní diferen­
ciace ordinálních znaků.

Ordinální vlastnosti (vlastnosti s uspořá­
danými stavy) mohou být chápány jako dis­
krétní {rozpojité), nebo kontinuální {spojité).

Diskrétní ordinální vlastnosti jsou např.: 
— hodnost v armádě
— funkční zařazení v organizaci
— stupeň ukončeného školního vzdělání 
— akademická a vědecká hodnost 
— postavení v kastovním systému
— Výsledky Guttmanova škálovacího po­

stupu
Spojité vlastnosti jsou např.:

— spokojenost s prací
— schopnost řídit organizaci
— stupeň přizpůsobivosti
— inteligence
— sportovní výkonnost

Rozpojitost, či spojitost chápání ordinální 
vlastnosti ovšem ještě neznamená, že také 
její znak musí být rozpojitý, či spojitý. 
Mnohdy jc dost obtížné určit (či zavést před­
poklad), zda znak (proměnná) je spojitý, či 
diskrétní (např. stadia vývoje, generační roz­
vrstvení, velikostní charakteristiky, statis­
tická asociace dvou proměnných pro koneč­
nou populaci). V takovém případě se rozho­
dujeme pro model na základě výzkumné zku­
šenosti, intuice a dostupnosti statistických 
technik.

Duta o spojitých vlastnostech tvoří sesku­
pení, neboť jednotlivce většinou není možno 
našimi měřicími prostředky rozlišit a není to 
ani nutné, protože už metodologií dotazu 
spojitou vlastnost diskretizujeme. Tak do­
spíváme k situaci, kdy získaná uspořádaná 
kategorizace je podložena kontinuem.

Na druhé straně i jasně diskrétní vlastnost 
(např. hodnost v armádě či funkce v organi­
zaci) může být, indikací jiné, spojité vlast­

nosti (např. odborných schopností nebo doby 
služby). V takovém případě opět můžeme 
hodnoty diskrétní vlastnosti považovat za 
skupiny vzniklé na určitém kontinuu. i*

V modelovém přístupu je nutno nakonec 
brát v úvahu i způsob, jak seskupování stavů 
spojité vlastnosti vzniká. Bud' může být 
způsobeno skutečnou nerozlišitelností, nebo 
k němu může docházet na základě jistých 
kritérií; tak může vzniknout ordinální znak 
např. i z číselných měření (věkové hodnoty 
můžeme kategorizovat na děti, mládež, mla­
dé plnoleté, střední věk, skupinu před dů­
chodem, důchodce) nebo z grafických zjiště­
ní (metoda sémantického diferenciálu). Na 
druhé straně může být kategorizace předem 
dána (uzavřené otázky týkající se spokoje­
nosti, hodnocení, školní klasifikace).

O dále uvedených dvou modelech, tj. dis­
krétním a spojitém znaku, proto vůbec není 
jednoduché rozhodnout, který z nich je pro 
danou situaci vhodnější. Pro autora této 
stati jc hlavním kritériem to, zda ke katego­
rizaci dochází s apriorním záměrem, či na 
základě aposteriorního (po měření) rozdělení 
kontinua.

4. Charakteristiky dat diskrétního 
ordinálního znaku

Postup zde aplikovaný sleduje obecný pří­
stup k zavedení měr, vypracovaný v části 2 
této stati. To jednak umožní posouzení vhod­
nosti modelu srovnáním s jinými typy znaků 
a jednak ukáže na paralelnost jednotlivých 
měr.

Ještě před uvedením modelu samého si za­
vedeme další označení pro distribuční'.Junker-.

Ft^^Jj pro z =1,2,..., K

Fifr = ^/¡ir pro i = 1, 2,..., K

a pro všechna r

Ordinální znak B = {6;} bude mít hodnoty 
{61, bn,. . ., 6/<}, uspořádané podle rostoucích 
hodnot indexu.10

A. Určení charakteristiky nepodobnosti, 
rozdílnosti či vzdálenosti dvou jedinců popu-

10 V zájmu jednoduchosti předpokládáme, že znak B 
je konečný. Veškeré úvahy ovšem lze snadno rozšířit 
na spočetné znaky, a tak všechny výsledky lze např.

aplikovat na diskrétní, celočíselná rozdělení, jako je 
Poissonovo, geometrické, negativní binomické, logarit­
mické apod.
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láce vzhledem ke znaku B musí vycházet 
z heuristických požadavků a musí charakte­
rizovat diskrétní ordinalitu znaku. Budeme 
zde vycházet z funkce
(14) d^bi, bj) = |t — j| pro všechna i, j 
To znamená, že rozdíl mezi dvěma prvky je 
dán počtem kroků, které musí učinit jeden, 
aby se dostal na pozici (úroveň) druhého. 
Např., jsou-li 63 a 64 třetí a čtvrtý stupeň 
armádních hodností, pak rozdíl mezi dvěma 
osobami s hodnostmi 63 a 64 je jeden stupeň; 
osoba s 63 musí být jednou povýšena, aby 
se dostala na stupeň b^. Je-li B znak spoko­
jenosti, pak dva respondenti s hodnotami ůo 
a ba se liší o jeden stupeň spokojenosti.

Tato neparametrická funkce je nezávislá 
na přiřazení skóre ke kategoriím bv, je tedy 
(a též vše, co je z ní odvozeno) invariantní 
k libovolné rostoucí transformaci hodnot 
{6j}, jsou-li tyto hodnoty vyjádřeny číselně.

Model se nehodí pro případ spojitých dat 
seskupených pro svou nerozlišitelnost. Hodí 
se tedy pouze tam, kde je předem dána kate­
gorizace, ať už diskrétní podstatou dané 
vlastnosti, či vzniklá metodologickou nebo 
teoretickou apriorní diskretizací spojité vlast­
nosti, např. pomocí uzavřené otázky či se- 
skupovacího pravidla. Diskrétní ordinální 
model je tedy vhodný jako uspořádaná klasi­
fikace, a to buď s podloženou latentní spoji­
tou proměnnou, nebo bez ní.11

B. Míra variability pro diskrétní ordináln1 
znak může být proto zavedena jako veličina

(15) d = dorvar B = ^ ^IftJjV — j\

(16) -^W ”
i

Tato diskrétní ordinální variance značí prů­
měrný počet kategorií, o něž se liší dvojice 
prvků populace tz.12

Její vlastnosti jsou obdobné jako u obecné 
míry:

a) d = 0, právě když všichni jedinci po­
pulace patří do jedné (libovolné) kategorie;

b) d je tím větší, čím větší hodnoty/, jsou 
umístěny u okrajových kategorií znaku B, to 
jest, vyšší váhy máme u velkých rozdílů 
1» — JI-

C. Mírou ccntrality hodnoty bi je d* = 
= S/;|j _ l"L Jak je možno ukázat podle

[Gini 1970], tato míra nabývá pro bi minima, 
které nazveme mediánovou kategorií^ ozna­
číme bM a určíme takto:

(17) bM jc hodnota znaku, pro niž
-^m-i < 0,5, Fm 2ž 0,5 a Jm > 0

Mediánová kategorie je tedy centrem rozlo­
žení diskrétního ordinálního znaku.

D. Jako další míru variability můžeme 
vzít kocentraci dat kolem mediánové kate­
gorie, tedy

(18) d* = Dorvar B = T-f^i - JD

kde M je mediánová kategorie.
Tato míra má stejné vlastnosti jako d dané 

vzorcem (16). Míra d* = Dorvar je průměrný 
počet kategorií, o které se liší prvky popu­
lace od centra rozložení.

K oběma mírám variability je nutno po­
znamenat, že to jsou míry spjaté s danou 
kategorizací. Jestliže zjemníme kategorizaci, 
tj. určíme více tříd, pak se míra změní. Po­
kud je znak odrazem rozkladu kontinua, pak 
velice záleží na tom, na kolik kategorií je 
rozložíme. Provedeme-li takový rozklad a po 
zjištění dat pro danou populaci se ukáže, že 
jedna z tříd je prázdná, pak ji nemůžeme 
prostě vynechat anebo sloučit se sousední 
kategorií, aniž provedeme obsahové přehodno­
cení znaku a tím míry. V této vlastnosti

11 Nutno poznamenat, že většina pořadových metod 
neparametrickó statistiky, např. mediánový test, Spear- 
manův a Kendallův koeficient pořadové korelace nebo 
Wilcoxonův test, odpovídají nikoli diskrétnímu, ale spo­
jitému chápání proměnné, která je po měření bud roz­
dělena do tříd, nebo jsou u ní konstatována spojená 
pořadí. Rozložení takových statistických testů, koefi­
cientů apod. ve většině diskrétních případů není známo 
a stejné testové statistiky pro uvedené dva modely se 
mohou navzájem lišit rozložením a kritickými hodnotami.

“ Přijetí, či zamítnutí modelu padá s přijetím, či za­

mítnutím funkce d(a, b). Vše ostatní je jednoznačné, 
tak jako u jiných typů znaků. Domnívám se, že zave­
dení d^a, b) tímto způsobem je logické a že plně odpo­
vídá chápání modelu. Tak jako u nominálních a kardi­
nálních znaků, i zde je funkce d(a, b) zavedena nojjed- 
nodušším možným způsobem. — Zkratka dorvar značí 
diskrétní ordinální varianci.

13 Mediánová kategorie jo taková, do níž by vstoupil 
prostřední člen populace uspořádané podle hodnot 
znaku B.
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a požadavku je vidět základní interpretační 
rozdíl mezi spojitými a diskrétními daty.

E. F. Aplikací vztahů (13a) a (13b) a pre­
dikční interpretace dostaneme dvě asyme­
trické asociace mezi nominálním znakem 
(rozkladovým znakem 7?) a daným diskrét­
ním ordinálním znakem 7k

Koeficient proporcionální predikce;

R K
S !lr F;/r(l — F</r)

(19) 3bIR = 1 - 1 -----------------

2 Fi(l - F^ 
i=l

Koeficient optimální predikce;

R K
5 (Ir ^ijilr\ i — Mt j 

(=0) ^„=1--^^—

kdo M je pořadí mediánové kategorie Lm 
v populaci ct a 71Ir je pořadí mediánové ka­
tegorie Um v rté oblasti rozkladu 77.

Diskrétní ordinální variance dorvav [viz 
(15) a (16)] má podobné rozkladové vlast­
nosti jako ANOVA pro kardinální znaky 
a CAT ANO V A, která je těsně spjata s Wal- 
lisovým ta,r [Light- Margolin 1971; Margo­
lin - Light 1974],

Můžeme psát

(21) 5 Fj(l - F^ =

= 5j 9t2i Fi/r(l — í f/r) -¡~

+ 5 S OAFi/r - F^ 
i r

Tento výraz je analogický známému TSS = 
= 1FNS -r BSS z analýzy rozptylu (celkový 
součet čtverců je roven součtu čtverců uvnitř 
oblastí plus součtu čtverců mezi oblastmi). 
Druhý člen je vážený součet čtverců euklei­
dovských vzdáleností distribučních funkcí 
jednotlivých rozložení v oblastech a distri- 
fuční funkce rozložení v celé populaci. Je 
možné jej vyjádřit též takto:

K R
(22) 5 S Qr^i r - F^ =

R R K
= 2 S £ 9r9s E (Fijr — Fn^

T 8 i

Obě strany vyjadřují základní interpretace 
variability mezi oblastmi, tedy analog BSS; 
pravá strana ukazuje, že tento člen je váže­
ným součtem eukleidovských vzdáleností 
všech dvojic podmíněných distribucí v ob­
lastech rozkladu 7?. Lze tedy očekávat, že 
bude možno vypracovat neparametrickou 
metodu DORANOVA, paralelní s analýzami 
rozptylu pro kardinální a nominální znaky.

Tyto vlastnosti ukazují, že k obecným 
vlastnostem koeficientu (13) můžeme pro 3 
připojit ještě další důležité vlastnosti:

d)0g|?gL
e) 3 = 0 má za následek, že všechna pod­

míněná rozložení jsou stejná, tj. že B je na 
77 statisticky nezávislé.

f) 3 = 1 má za následek, že veškerá va­
riabilita ve všech {tt^} vymizí. To znamená, 
že predikce B za pomoci 7? je jednoznačná; 
statistický vztah je nahrazen úplnou jedno­
značnou funkční závislostí 77 —> B.

5. Spojitý ordinální znak

Spojitý ordinální model předpokládá, že 
vlastnost je kontinuem a že seskupování je 
samovolné; je způsobeno buď nedostatečně 
citlivým měřicím aparátem, nebo aposterior- 
ními úvahami výzkumníka. Typickým pří­
kladem je rozdělování sportovců do skupin 
podle výkonu (výkon je spojitá proměnná); 
skupiny se vytvářejí tak, že se seskupí spor­
tovci přibližně stejného výkonu a sportov­
ních schopností. Jiným častým postupem je 
seskupování nezávislých objektů (výběro­
vých souborů), u kterých se při testování 
statistické hypotézy o rovnosti, či různosti 
některé míry střední hodnoty neukázaly sig­
nifikantně rozdílné výsledky. Nakonec uveď­
me seskupování pomocí seskupovaní analý­
zy14 nebo pomocí obsahové analýzy (obojí je 
postup aposteriorní — po získání dat).

Na tento typ znaku lze aplikovat všechny 
pořadové metody neparametrické statistiky 
s jejich modifikacemi pro realizovaná spoje­
ní. Jejich modely odpovídají spojité veličině

14 Seskup ovací analýza jo název vhodný pro metody, 
které se v anglické odborné literatuře nazývají cluster 
analysis, clustering method nebo mathematical taxonomy.

Autor jej navrhuje po diskusi b pracovníkem Ústavu 
pro jazyk český ČSAV.
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a náhodnému vytváření skupin nerozlišitel­
ných či a posteriori sloučených pozorování.

Dále, stejně jako v předcházející části, bu­
deme postupně sledovat obecný model z čás­
ti 2. Pro všechny závěry je ovšem nejdůleži­
tější opět oddíl A, ve kterém se zavádí míra 
nepodobnosti dvou prvků populace.

A. Vzdálenost či nepodobnost dvou jedin­
ců populace nelze zde založit na hodnotách 
znaku samých, neboť jednak je známa pouze 
informace o uspořádání a seskupování prvků 
a jednak jakékoliv míry musí být zcela in­
variantní k libovolnému roztažení či libovol­
né rostoucí transformaci škály. Proto zave­
deme vzdálenost dvou jedinců jako očekávaný 
počet jedinců, kteří jsou mezi nimi. Je-li nyní 
A spojitý ordinální znak, jenž vytvořil se­
skupení, označená ai a uspořádaná podle ros­
toucí hodnoty indexu i (A = {«4), pak je-li 
/i relativní četnost hodnoty znaku at (resp. 
pravděpodobnost, že náhodně vybraný prvek 
je ze skupiny ai), definujeme:

(23) d(at, a^ = -^ /< + 2 A + Wi 
k=i+i

pro j > i 
d^at, «;) = d^aj, ai) pro i > j 
dia;. «i) = 0 pro všechna i

První výraz můžeme přepsat též jako

(24) d(ai, aj) = hjt + (Fj-i Fd) + ^fi
= ^Fj_1^Fj')-lAFt-^F^

B. Pro zavedení míry variability (3) po­
užijeme vztahu (7). To znamená, že nejprve 
určíme dm ze (6):

(25) dm = (Fm — j) (Fm-i — ^) + {

Použitím (7) dostaneme „míru variability“ 
spojitého ordinálního znaku:

(26) d = corvar =
IK

— 2 fm{Fm — 4) (-^»8-1 — 2) + 4 
m = l

C. Lze ukázat, že výraz (25) nabývá mi­
nima pro index M, který je číslem mediánové 
skupiny ^kategorie) znaku A.

D. Proto druhá „míra variability“ spoji­
tého ordinálního znaku je

(27) dm ~ Corvar =
= (Fm — »■) (Fm-i — 2) + i

O variabilitě či rozptýlenosti dat vzhledem 
k hodnotám znaku však zde musíme mluvit 
pouze velice opatrně, vzhledem k libovolnosti 
škál vlastností. Proto zde můžeme mluvit 
spíše o míře kvality predikce mediánovou 
kategorií (27), popř. o míře seskupení dat 
(26) a proporcionální prediktabilitč. Hodno­
ta d totiž značí průměrné procento osob z po­
pulace (až na faktor sto), které se vyskytnou 
na škále mezi dvěma náhodně vybranými 
osobami. Čím je toto číslo menší, tím sesku- 
penější jsou data ve skupinách (tím méně jo 
tu kategorií). Proto je d ukazatelem neurči­
tosti rozložení, resp. jeho variability, pouze 
v uvedeném smyslu. Jc ovšem obtížné najít 
jiný obsah variability pro data tohoto typu.15

Vlastnosti míry corvar (26):
a) je rovna nule, jestliže všechna data spa­

dají do jedné skupiny;
b) je tím větší, čím „rozptýlenější“ jsou 

data, tj. čím méně seskupená data dostá­
váme;

c) na rozdíl od dorvar — variance pro dis­
krétní ordinální data — je tato míra necitlivá 
na vložení, či vynechání libovolného počtu 
prázdných kategorií mezi dvěma skupinami.

Z vlastnosti c) plyne, že kdybychom tuto 
míru aplikovali na uspořádanou kategorizaci, 
pak bychom prázdné kategorie mohli vyne­
chat (vzorec je vynechává automaticky).16

Druhá míra — Corvar (27) — má tyto 
vlastnosti:

a) je rovna nule, jestliže se všechna data 
soustředí do jedné skupiny (to značí perfekt­
ní prediktabilitu);

b) je tím větší, čím menší je obsazení me­
diánové kategorie;

c) je necitlivá na obsazení nemediánových 
kategorií.

Vlastnost a) má obdobu ve vlastnosti va­
riačního poměru (1 — JmcaY použitelného 
pro nominální znaky. Corvar i variační po-

11 Maximální varianci corvar bychom dostali pro po­
pulaci absolutně seřazenou do pořadí. Proto výraz 
d!dmax je vlastně indexem seskupenosti dat.

11 Tuto vlastnost má např. Spearmanův koeficient 
pro kontingenční tabulky a též všechny míry založené na 
rozdílu mezi počtem shod a počtem neshod (obvykle o-

značeném P — Q), jako je Goodman-Kruskalovo gama,
Kendallovo t, Sommersovo d. Všechny tyto míry 
také mají v podtextu spojitý model, na nějž jsou apli­
kovatelné (i když se při odvozování na spojitý případ 
neodvolávají).
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Tabulka. 1: Rozložení četnosti a distribuční kumulativní funkce rozloženi návštěvnosti koncertů ,,pop-miisic“, 
džezové a taneční hudby (v %, distribuční funkce v závorkách)

Oblast

Název a číslo kategorio odpovědí

Součet

Za­
stoupeni 
oblasti
v popu­

laci

Nena­
vštěvuje

(I)

1 X za 
sezónu

(2)

2-3 x 
za 

sezónu
(3)

4 —6 X 
za 

sezónu
(4)

1 X za 
měsíc

(5)

1 X za
14 dní

(6)

1 X za 
týden

(7)

Osoby mladší 
než 30 let 
(«1)

33 
(33)

21
(54)

24 
(78)

10
(88)

6 
(94)

6 
(100) (100)

100 50

Osoby ve věku 
30 a více lot 
(™2)

81
(81) (88)

12 
(100) (100) (100) (100) (100)

100 50

Celá populace 
(tt)

57 
(57)

14
(71)

18
(89)

5 
(94)

3 
(97)

3 
(100) (100)

100 100

měr se hodí jako charakteristiky variability 
pouze částečně; v praxi je možno je použít 
pro první informaci.

E. F. Nakonec nás zajímají koeficienty 
souvislosti s rozkladovým znakem R. Aplika­
cí vzorce (13a) dostaneme koeficient propor­
cionální predikce:

(28) O.B/R =

V^ar^MFilr-^ ^Vu,- i)] + i

! Tm^v^Wí- i - i) 1 ; 1

Obdobně, aplikací vzorce (13b), dostaneme 
(29) «.r/r =

[ 2 dAFm„
= 1----- r__—

I) (-^/r - i)] + l

(.Fm — I) (Fm-i — i) + 4
kde Jí je pořadí mediánové skupiny v celé 
populaci n a Mr je pořadí mediánové skupi­
ny v oblasti 7Tr, tj. číslo, které slouží pouze 
k identifikaci mediánové skupiny a tím pří­
slušných hodnot funkce Fur; přitom není dů­
ležité, zda se číslování vztahuje k číslování 
skupin v .-t, či zda se vynechávají ty skupiny, 
které v ;tr mizí.

Vlastnosti koeficientu olbjr pro asymetric­

kou statistickou závislost mezi nominálním 
rozkladovým znakem R a spojitým ordinál- 
ním znakem B'.

a) index je aplikovatelný pouze tehdy, 
jestliže variabilita v B je nenulová, tj. jest­
liže existují alespoň dvě obsazené nenulové 
skupiny (kategorie);

b) jestliže v jednotlivých oblastech Rr se 
vyskytuje vždy pouze jedna skupina, pak jo 
predikce na základě znalosti Rr jednoznačná 
a ^b/r = 1;

c) «.b/r = 0, právě když B je nezávislé 
na R.

Vlastnosti koeficientu o^b/r'-
platí a) i b);
c) jestliže B je nezávislé na R, pak 

a.*B/R = 0.
Oba koeficienty jsou v mezích mezi nulou 

a jedničkou.

6. Numerický příklad

Na příkladu si ukážeme postup výpočtů pro 
všechny charakteristiky ordinálnich znaků 
zavedené v této stati. Na jedné kontingenční 
tabulce si ukážeme výpočty pro oba modely: 
spojitý i diskrétní. Z instruktivních důvodů 
jsou uvedeny i mezivýpočty a různé kon­
troly.

Výchozí je tabulka I.17

17 Data tabulky jsou vzata ze sociologického výzku­
mu, rozložení však jsou získána jako náhodný výběr 
z původních, rozsáhlých dat. U znaku, který je uveden

v tabulce, je těžké se rozhodnout pro jakoukoli kvan­
tifikaci, neboť kategorie odpovědí nejsou dobře kvanti- 
fikovatelné (vzhledem k neurčité delce sezóny).
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Tabulka 2: Výrazy F(\ — F) pro jednotlivá pole tabulky 1

Oblast
Kategorie

Součet 
(¿ doroar1) 9r

(1) (2) (3) (4) (5) (6) (7)

^1 .2211 .2484 .1716 .1056 .0564 .0000 .0000 .8031 .50

7t2 .1539 .1056 .0000 .0000 .0000 0000. .0000 .2595 .50

71 .2451 .2059 .0979 .0564 .0291 .0000 .0000 .6344 .5313

1. Výpočet koeficientu Pb/r zahajujeme 
sestavením tabulky 2.18 Je zbytečné výrazy 
^(1 — F^ násobit dvěma, neboť při výpočtu 
koeficientu asociace se tento faktor zruší. 
V posledním řádku a posledním sloupci uve­
dené tabulky je hodnota

^ýr SFi/r(l — Ft/r) =
= 0,50 X 0,8031 + 0,50 X 0,2595 = 0,53130

Dosazením do vzorce (19) dostaneme

ß =
0,6344 - 0,5313 

0,6344 0,1625

Provedme ještě kontrolu rozkladu diskrét­
ní ordinální variance pomocí vzorců (21) 
a (22). Nejprve vypočítáme výraz

i S ^gTgs ^Fi/r - F^ = 0,5 X 0,5 X 
X 0,5 X 2[(0,33 - 0,81)2 + (0,54 - 0,88)2 + 

+ (0,78 - l,00)2 + (0,88 - 1.00)2 + 
+ 0,94 - 1,00)2 + (1,00 - l,00)2 +

+ (1,00 - 1,00)2] = 0,25 X 0,4124 = 0,1031

A nyní musí platit součtová vlastnost

T-gr 5^(1 - Fi^ = 0,5313
í 2 ^grgs ^Fi/r - Ft„^ = 0,1031

NPť(l - Pť) = 0,6344

Poslední, součtový řádek se rovná ^- dorvar B.
2. Výsledky výpočtů měr centrality a měr 

Dorvar jsou uvedeny v tabulce 3.19 Míry 
centrality pro všechna pole jsou uvedeny jen 
pro ilustraci. Nebyly k dalším výpočtům pro

Tabulka 3: Miry centrality Ujj |f — t| pro každé pole tabulky 1

Oblast
Kategorie

Dorvar
(1) (2) (3) (4) (5) (6) (7)

Í71 1.53 1.19 1.27 1.83 2.59 3.47 4.47 1.19

712 .31 .93 1.69 2.69 3.69 4.69 5.69 .31

71 .92 1.06 1.48 2.26 3.14 4.08 5.08 .92

11 Hodnoty v polích tabulky se vypočítají dosazením 
do příslušného součinu 2^(1 — Fy Např. u oblasti osob 
mladších než 30 let bude pro první pole (nenavštěvuje)

11 Výpočty hodnot v tabulce můžeme ilustrovat např. 
pro čtvrté pole první oblasti:

^i/i(l - Fn^ = 0,33(1 - 0,33) = 0,2211
Pro druhé pole je

^2/1(1 — 2^2/1) = 0,54(1 - 0,54) = 0,2484

Pro celkové rozložení a čtvrté polo (4—Okřát za sezónu) 
je hodnota

^4(1 - r4) = 0,94(1 - 0,94) = 0,0564

^íi!l\j - *1 = 0,33|l - 4| + 0,21|2 - 4| +
+ 0,24|3 — 4| + 0,10|4 — 4| + 0,06|5 — 4| +

+ 0,06|6 - 4| = 3 x 0,33 + 2 x 0,21 + 0,24 +
+ 0,06 + 2 x 0,06 = 1,83

Pro první polo oclého rozložení dostaneme
£/,!,-- 1| = 0,57|l - 1| + 0,14|2 - 1| +

4- O.18|3 - 1| + 0,05|4 - 1] + 0,03|5 - 1| +
+ 0,03|6 - 1| = 0,92
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Tabulka 4: Hodnoty (Fm — J) ^Fm-\ — 4) + | pro tabulku 1

Oblast
Kategorie

corvar
(I) (2) (3) (4) (5) (6) (7)

®1 .3350 
(.33)

.2432
(.21)

.2612 
(.24)

.3564
(.10)

.4172 
(.06)

.4700 
(.06)

.5000 
(0.0)

0.313182

.0950 
(.81)

.3678 
(.07)

.4400 
(■12)

.5000 
(0.0)

.5000
(0.0)

.5000
(0.0)

.5000 
(0.0)

0.155496

.2150 
(.57)

.2647 
(.14)

.3319
(.18)

.4216 
(.05)

.4568 
(.03)

.4850 
(.03)

.5000
(0.0)

0.268684

diskrétní model zapotřebí; stačilo spočítat 
pro každý řádek nejmenší z nich, která odpo­
vídá mediánové kategorii.

Z tabulky 3 plyne také kontrola:

S/<(?/^-jl) =

= 2 5^(1 — ř") pro každý řádek
Např. pro druhý řádek

0,81 X 0,31 + 0,07 X 0,93 + '
+ 0,12 X 1,69 = 0,519 (levá strana)
2 x 0,2595 — 0,519 (pravá strana)

Dosadíme do vzorce (20):

0,50 x 1.19 + 0,50 X 0,31
ßBIR= 1-----------------—--- ----------------

0 75
^=1--5^ = °,1848

Koeficienty [3 a (3*, které vyjadřují reduk­
ci variability rozkladem na dvě věkové sku­
piny, jsou značně vysoké a ukazují, že vě­
kové skupiny vysvětlují 16,25 %, popř. 
18,48 % chování vyjádřeného znakem ná­
vštěvnost koncertu. . ., což je hodně.

3. Míry pro spojitý model vypočteme nej­
lépe tak, že nejprve sestavíme tabulku hod­
not <1^ z výrazu (25); tato tabulka 4 je ob­
dobná k tabulce 3. Výpočty zde budou vy­
cházet z distribučních funkcí.  Poslední20

sloupec vznikne podle vzorce (26), tj. váže­
ním hodnot řádků příslušnými relativními 
četnostmi, které jsou pro názornost připoje­
ny v závorkách. Vážené hodnoty v posled­
ním sloupci tabulky jsou „míry variability“ 
corvar.

Minimální hodnoty dm určují v každém 
řádku mediánovou kategorii. Tyto mediáno­
vé hodnoty jsou současně příslušné „míry 
variability“ Corvar.

Míry asociace vypočteme podle vzorců 
(28) a (29). ’ '
Koeficient proporcionální predikce:

«B/n =
0,5 x 0,3132-4-0,5x0,1555

0,2687 = 0,1278

Koeficient optimální predikce: 
»■BJR =

= 1 0,5 X 0,2432 + 0,5x0,0950
0,2150 = 0,2135

4. Všechny výsledky shrneme do přehledné 
tabulky 5. Nejde o to komentovat tyto vý­
sledky z hlediska interpretace; je zřejmé, že 
číselné výsledky v tabulce odpovídají situaci 
a že jsme podobné číselné relace očekávali. 
Zde je nutno zdůraznit, že řádkově nejsou 
hodnoty srovnatelné, neboť každý sloupec má

20 Jako příklad výpočtů hodnot pro tabulku 4 uve­
deme nejdříve výpočet hodnoty ve třetím poli prvního 
řádku:

(^3/1 — 4) (-^2/1 — ¡J + í =
= (0,7$ - 0,50) (0,54 - 0,50) + 0,25 = 0,2612 

Hodnotu v prvním poli posledního řádku dostaneme 
takto:

(f'l — |) (Fq — ¿) + í =
= (0,57 - 0,50) (0,00 - 0,50) + 0,25 = 0,2150

Pro výpočet hodnot v prvním poli každého řádku po­
třebujeme znát Fq, popř. Fq/i nebo Fq]^. Tyto hodnoty 
jsou vždy rovny nule.
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Tabulka 5: Numerické hodnoty charakteristik ordinalního znaku z tabulky 1

Oblast Mediánová kategorie 
(17)

Diskrétní model Spojitý model i

don-ar 
(16)

Dor var 
(18)

corvar 
(26)

Corcar

Hl 1 x za sezónu .8031 1.19 .3132 .2432 '

Tlí nenavštěvuje .2595 .31 . 1555 .0950

71 nenavštěvuje .6344 .92 .2687 .2150

j = .1625 P* = .1848 a = .1278 a* = .2135

jinou operacionální definici, a tedy jiný vý­
znam. Vyšší hodnoty koeficientů optimální 
predikce (obzvláště a*) ve srovnání s koefi­
cienty proporcionální predikce jsou způsobe­
ny zřejmě tím, že koeficienty p* a a* (pře­
devším a*) jsou citlivější na obsazení mediá­
nových kategorií. V našich datech jsou ve­
lice vysoké četnosti mediánových kategorií, 
což zvyšuje přesnost optimální predikce me­
diánovou kategorií a tím i koeficienty p* a a*.

7. Závěry

V práci byly zavedeny deskriptivní charak­
teristiky pro analýzu ordinálních dat. Byly 
předloženy dva modely, diskrétní a spojitý, 
které mají podstatně rozdílné základy. Roz­
hodnutí pro některý z obou modelů není jed­
noduché, neboť záleží na určení typu vlast­
nosti, kterou znak reprezentuje, a na tom, 
která funkce d(n, 6) danou vlastnost lépe 
charakterizuje.

Zde uvedené metody analýzy dat ovšem 
nejsou jedinými přístupy; v současné statis­
tické literatuře lze nalézt několik zcela odliš­
ných přístupů k testování hypotéz v kontin- 
genčních tabulkách s ordinálními vstupy, tj. 
s uspořádanými kategoriemi. Přednosti obou 
předložených modelů spočívají v jejich pros­
totě a srovnatelnosti s přístupy k datům 
jiných typů.

Domnívám se, že míry d jsou pro oba pří­
pady (spojitý i diskrétní znak) užitečnější 
než d* (stejně jako v případě nominálního 
znaku), neboť hodnotí četnostní rozložení jako 
celek a nepřeceňují význam jedné hodnoty

(jíž je u d* střed rozložení). Též koeficienty 
P, a mají z tohoto důvodu přednost před 
P*, a* (podobně jako t má přednost před A 
u nominálních znaků). Koeficient p je výpo­
četně obdobou koeficientu t, jen místo rela­
tivních četností se zde dosazují hodnoty dis­
tribučních funkcí.

Z obou modelů má větší důležitost model 
diskrétní, neboť podle mého názoru je pro 
sociologická šetření daleko použitelnější. U to­
hoto modelu bude velice nadějné zkoumat 
rozklady analýzy rozptylu, jejich statistická 
rozložení a jejich použitelnost pro testování 
statistických hypotéz.

Zde naznačená teorie může být zobecněna 
a matematicky dále zkoumána. V této stati 
byly složitější matematické úvahy a formu­
lace pokud možno vynechávány. Cílem toho­
to článku bylo zavedení měr a jejich mode­
lové operacionalizace, nikoliv zkoumání 
statistických vlastností. Proto zde nejsou 
uvedeny asymptotické konfidenční intervaly 
a další vlastnosti, které budou publikovány 
zvlášť.
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PpjiOMC
Pwerau IL: Ociiobhw aecKpnnTnmiwc Mepw aaa 
HHCTpHOypiin opjvr-l l*IbHMX HaHUbIX
13 CTaTbe oocynta, i"tch ncxoanan Moawib a-'1« 
paspaCoTKH aecKpmiTifiniMx (nimcareabiiMx) xa- 
paKTepircrifK. YKaabiBaeTCH iia to, b Kanoil ctc- 
ncini npnnnTHO aan noMiinaar.iiMX n 'imc.wbmx 
aaiHIMX MCpM COOTBeTCTBVIOT OTOH MOaetilt H BMO- 
cre c tcm Moae.ab npirnaraeTcn k opannaabni.iM 
^ailJIMM.

OGinaa m >aenr> paannBacTcit b caeayromiix ina­
rax:

A. Jfaenica onpede.teuue omiiotueHua aeczoace- 
cmea, pacópoca, paccmoanua d\a, i) jyin anyx 
oncMeiiTOB noiiyjumnir, a mmchho no otiiohichhio 
k mKatio naynauMoro npiranaKa.

13. OiKHgaeMOo OTnonienne d(a, bj cayatHT .uc­
pou paaGpoca (3).

13. Lfeump OucmpuCyi^uu onpeaetmcTcn nan 
snaacnae npiranaKa, y Koioporo npe,inojraraeTcn 
Haniienbinee niicjionoe anaacHiie necxoiKecTBa (6).

F. OtKH^aeMoe ananenHC OTnoinenna paccroa- 
HM;r ot penrpa gncipHoymni iibmotch cac;tyio- 
meii Mepoii paaGpoca, KOTopaa xapaKTcpaaycT 
Kouyeiimpupoeauuocmb soKpya yenmpa (9).

/i. Cbh3i> KJiaccnýirmipyiomero npasnaKa 
h HaynaeMoro npnanaua mm MBMcpncM hh.iokcom, 
KOTopMii moskho naBBaTb unOencoM oG-bacuawmeu. 
cum paaGuciKu it KOTopbrii BOBiiitKaeT b KaaecTBO 
OTHOCMTeJibtioit ptyyKnirn BapiiaGnabnocTii no 
OTHOinennro k paaGnBite [ýopMyjiM (13), (13a), 
(13b)].

E. npeptmccTByromne niarit iipocio nniepnpe- 
THpoBaTb upn noMonyi npeduKyuoHiiou Mode.tu. 
OnTHMajibHHM npcanKTopoM ancTpiiGyuint as-

aaeTca cro neHTp no oTnonicnnio k ninnÓKe 
npennKmrn, BBoganrniica c noMoini.ro BbipařKeitna 
necxořKecTit d(a, bj. /řih MCp acconnaunn (13) 
bbtgm cyipecTByeT itaBCCTHaa PRE-irarepupeTa- 
nim (proportional reduction in error) ann accn- 
MerpimecKiix cayqacB.

TlpimožKenne otofo moto,ta k noMirnaiibUbíM 
iipnanaKaM (cm. npiriiep 1) naer upír oiipenejienírn 
oiHOinemm d(a, b) c noxouibio (1) iraBccTiibie 
Mopu npo,ie OTHornenna noBTopn.Moc.Tjr (4), Mo;tyca 
(8) h oTHomcHira Bapnaiutir (10); upitMeiíCHne 
jiopMyaM (13a) naei tair Bananca, a iijaLMCBenin* 
<I>opMynM (13b) — Řzt/n FyiTMana. /(jta Kapair- 
naabHoro npiianaKa mm nocTeneniio no.iyaaeM 
gircnepcirio, cpcnmoio n oTHouiemrc Koppcaapini 
(cm. npnMep 2). Ode Mopu paaóitBKir n ;iammM 
cjiyiae aKBitBa.neuTuM (aa iicajnoacinreM (jiaKTapa 
2) gna HenpcpMBHoro iioiiHManna npn.niaKa. Jlym 
HiiCKpeTHoro niíýpoBoro anana iipnanaicinte ýop- 
Mya (6) h (9) iipnnoRiiT k iicnpaBaeiiino ;incnep- 
cnn b oGmmhom noHir.Manini h-tchom (,V — A *)-’, 
rp;e X ec.Tb cpennaa a A* octi, ó.iiDKaiuiiee k neii 
pirýpoBoc BHaaomfc npn;;naKa.

ňpnjioHxenHe otofo mcto/pi k op;tnHaJibiibi.M 
npnanaKaM npiiBo;(HT k nbrne/iemuo ;;Byx mo- 
geaeň:

1. flirciipcTnaa op;(irna;ibnaa Močeni, u]>e;tno- 
aaracT ynopanoncnyio KaTeropnaaparo. Snaacnne 
necxožKccTBa (14) BMpaiKaeT anc.no KaTeropirii, 
KoiopMMH OTanaaioTca aua uneMeuTanony.ianitH. 
Ero ožKM.iacMoe jmaacnite ,"pia bccx nap oóo- 
SHaaaeTca nan dorvar (nirci;poTnaa op;tirna;ibiia>T 
napnanim) n onpe.te.iíícTOi cpopMy.ioh (15) iltm 
ec upocToh Bepcireii (16). HenipoM ;tircTpnóyHirn 
.ancnpcTiioro op/priiajii.noio upnanana bií.dictch 
naTeropini Molitanu (17). Mepoii KonpeiiTpauiní 
Bonpyr KaTcropnit Mo^nani.i hbjihctch cjienyio- 
man xapaKTeptrcTTtna paaópoca, oanaaaeMan kok 
Dorvar (18). C.TaTnCTintecKyro 3aBitcn.Moc.Ti> ,prc- 
npeTHoro op.imiaai.iioro upnanaKa J> ot homh- 
naabnoro (Ktiacciapnnupyioinero) jipirsiiaKa li 
mm MoateM MBMepiiTb c iioMonibio Ko:><lic])irntreiiTa 
Pnin (19), y KOTopuro cymecTBycT l,HE-mrrep- 
npcTanitH ,tJin Mo.tcan oiiTUMa.Tbnoii iipcvuiKuint 
n moikct ognoBpeMenno cnyžKitTb n nan Mepa 
CTanrcTiniecKon aaiutciiMocTH Me?Kay noMnnaab- 
hmm n opaiinajibBMM iipirinaKaMM. IxoetíiýnunenT 
P*nlR cayatnT naii Mepa naa;i,eioiipiB c.BoiicTBaMit 
PRE-Mo,iean axa oniHMajibnoii npeamnuiii n to- 
;ko mo?k6t óhiTb MCiioabBOBaua nan Mepa cTarnc- 
TirtecKoň acciiMerpM-iecboii accon,nanMit Meanty 
HOMiniaiibiiMM m opniinaabHMM npiiaitaKaMK. 
XapaKTepitCTHKa paaópoca dorvar oóaaaaer nn- 
CTpndyTiiBHMMtt CBoiicTBa.MH (21) it (22), anaao- 
ritqHMMH Text, KoropMe mm mo;k6m naiiTM y CA- 
TANOVA n ANOVA: noaTOMy óyaeT yMccTno 
b3hti> ce b ochobv DORANOVÁ, t. e. nenapaMe- 
TpnaecKoro aHanirsa ancnepcnn paaópoca aaa 
aircKpeTnMX opanuaabHbix npirsnaKOB (ynopa- 
aoneitoň KaTerupnaaunn).

2. HcnpepMBHaH opanHaai.naH Moaeab ncxoaitT 
M3 Tom, hto na HenpcpMinroii urnaac neabun 
naacTi. b ocnoBy necxožKccTit nnnaKHx 3HaHennň, 
ItÓO OHM npOHBBOJIbHO M0H0T0HH0 H3MeHHeMbl. 
IloaTOMy cooTBCTCTByiom,ee oTnomeiine onpc- 
acancTCH KoannecTBOM naeMCHToB ((23), (24)), 
BCTpeHalOmn.XCn MCIKay II3ÓpaHHMMlI OJieMCHTaMM
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nonyjtHniiM. Anajioninno onpe^ejiniOTca Mepu 
corvar (26) II Corvar (27) KaK MCpM pasOpoc.a 
ganuM.x n KaTeropnn Me^naim iijiii, tohiicc, mc- 
RnaitOBaH rpyima b Rancorne qcnrpa airci'pimy- 
Hiiw. /lance npintoHiCHHCM (^opiiyji (13a) it (13b) 
mm nojiynaeM ^ua Koa^ituireiiTa acciiMeTpirk1- 
CKoii CTaTncTii'iecKoil aamrcHMocTir MOKgy iicnpc- 
pMBHMM opannaabnbiM npnaiiaKoM asm (28), 
ocnoBamiMM Ha iipoHoppnoiiajD.Hoit iijieanKpim, 
n a*B!R (29), ocnoBanitMM na oirntMaabnoii npe- 
jOTKipni.

¿[jih anajiiiTnqccKOM pafioTM c /vuihmmh ygod- 
nee Mcpu paaopoca it CTaTirmipieciarx aaaiKarMo- 
CTcii ociioBaniibie na npoiiopnifoiiiuiMioii npe^iiK- 
Hiiii, n6o onii oTpaiKaior noBe;ieniro ;(ip;Tpn6ynitit 
naii uwioro. McpM, ociionannMe na onniManMioii 
npe;vrKnironnoii Mogean, Gojioc y;(<)6nbi b KaHoc- 
tbo cnepnanbiibix noKaaaTcjien b pca.ibHMX cit- 
Tyapmix ripegiiKnirir.

13 6 nacTii npiiBcgcn npiiMep TaoaiiHM koh- 
TnureiiTOB c gnyMH BxojiaMit: CTpo’maH nepe- 
MCiman onpejtejinCT gae paiiiioBcainaie BoapacT- 
hbic rpynnu, a c.TojioqoBaa nepcMennan nMiHeroi 
opantra.ibnoii uepcMennoii iiocemacMOCTii Konpep­
tob «non-MyaiiKir». )fjia aioii Taornrubi uavcM 
BM'incjieubi nee xapaKTepiiCTiiKH oppHiiaJibiii.tx 
gannux, n])nBe^cHHMe b craTLe.

Summary
Rehak J.: Basic Descriptive Measures for 
the Distribution of Ordinal Data
The present paper discusses the basic model 
for working out descriptive characteristics. 
Measures usual for nominal and cardinal 
(numerical) data are shown to correspond to 
this model. Furthermore, the model is applied 
to ordinal data.

The general model involves the following 
steps:

A. The score of dissimilarity, dispersion, 
distance d(a, b) is defined for two elements 
of the population with a view to the scale of 
the variable under examination.

B. The expected score d(a, b) serves as 
a measure of dispersion (3).

C. The centre of distribution is defined as 
a value of the variable having the lowest 
expected score of dissimilarity (6).

D. The expected value of the score of dis­
tance from the centre of distribution is 
another measure of dispersion characterizing 
the concentration around the centre (9).

E. The relation between the decompositional 
variable and the variable under examination 
is measured by an index which can be de­
signated as the index of the explanatory 
power of decomposition and arises as a re­
lative reduction of variability in relation to 
the given decomposition [(13), (13a), (13b)].

F. The preceding procedure has also a 
simple interpretation with the help of the 
prediction model. The optimum distribution 
predictor is its mean in relation to the pre­
diction error introduced by means of the

score of dissimilarity d(a, b). Measures of 
association (13) then have the well-known 
PRE-interpretation (i.e. proportional reduction 
in error) for the asymmetric case.

In ascertaining the score d(a, b) by means 
of (1), the application of this procedure to 
nominal variables (see example 1) yields the 
known measures, as repetition ratio (4), modus 
(8) and variation ratio (10); by applying 
formula (13a), we get Wallis’ t, and by 
applying formula (13 b), we get Guttman’s 
2. For the cardinal variable, the dispersion, 
the average and the correlational ratio are 
successively obtained (see example 2). In this 
case, both the dispersion measures are equi­
valent (with the exception of factor 2) for 
the continuous conception of the variable. 
As regards the discrete numerical variable, 
the application of formulae (6) and (9) leads 
to the correction of the currently conceived 
dispersion by the member (X — X*)2, where 
X is the average and X* is the numerical 
value of the variable nearest to it.

The application of the procedure to ordinal 
variables leads to the differentiation of two 
models:

1. The discrete ordinal model presupposes 
an ordered categorization. The score of dis­
similarity (14) expresses the number of 
categories by which two population elements 
differ. The expected value of this score for 
all the pairs is designated as dorvar (i.e. dis­
crete ordinal variance), and is given by 
formula (15) or by its simple version (16). 
The centre of distribution follows as the 
median category (17). Formula (18) yields 
another measure of variability, a measure 
of concentration around the centre cal­
led Dorvar. The statistical dependence 
of the discrete ordinal variable B on the 
nominal (decompositional) variable R can be 
measured by means of the coefficient ^bir 
(19), having the PRE-interpretation for the 
model of proportional prediction. The coef­
ficient ^*bir (20) then has the PRE-inter­
pretation for the optimum prediction model, 
and can also serve as the measure of statis­
tical dependence between the nominal and 
the ordinal variables. The dispersion charac­
teristic dorvar has decompositional qualities 
(21) and (22), analogical to those that can be 
found in CATANOVA and ANOVA; con­
sequently, it will be adequate to make it the 
basis of DORANOVA, i.e. of the nonpara­
metric analysis of variance for discrete 
ordinal variables (ordered categorizations).

2. The continuous ordinal model is based 
on the fact that, on the continuous scale, no 
values can be considered as the basis of dis­
similarity, since they may be arbitrarily 
monotonously transformed. This is why 
the number of elements occurring among the 
selected population elements is taken as the 
dissimilarity score (23), (24). Analogically, the 
measures coruar (26) and Corvar (27) are de­
termined as measures of data dispersion, and 
the median category or, better said, the
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median group as the centre of distribution, 
gv the application of formulae (13a) and 
(13b), two coefficients of the asymmetrical 
statistical dependence between the nominal 
and the continuous ordinal variable are fur­
ther obtained: «bir (28), based on proportional 
prediction, and a*u/R (29), based on optimum 
prediction.

Measures of dispersion and statistical de­
pendences based on proportional prediction 
are adequate for analytical work with 
data, due to the fact that they reflect the

decomposition of the dispersion as a whole. 
Measures based on the optimum prediction 
are more convenient as special indicators of 
prediction quality.

In part 6, an example of a two-way 
contingency table is introduced: the row 
variable defines two age groups of equal size, 
and the column variable is the ordinal 
variable of attendance at „pop-music“ con­
certs. For this table, all the characteristics 
of ordinal data mentioned in the present 
paper are successively presented.
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