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V sociologickém výzkumu rozlišujeme různé 
typy znaků (viz např. [13], z nichž při statis­
tickém zpracování sociologických dat větši­
nou používáme tři základní: nominální, ordi­
nální a kardinální. Ostatní typy se používají 
ve speciálních situacích: data o malých 
skupinách, zpracování výsledků škálovacích 
postupů, zkoumání relací u vlastností, tvorbu 
a zavádění sociologických proměnných a po­
dobně.

V této práci se zabýváme technickými as­
pekty metodologické práce s ordinálními 
znaky. Navazujeme tak na stať |14], kde 
jsme shrnuli míry statistické závislosti pro 
nominální znaky. I u ordinálních měr je dů­
ležité vědět, jaká je logika a racionální zá­
klady každé míry. Chceme a musíme znát 
statisticko pravděpodobnostní model, z ně­
hož je ta která míra odvozena. Obdobně jako 
v [14], ani zde se nezabýváme statistickou 
diferencí, tj. konfidenčními intervaly a testo­
váním hypotéz. Vede nás k tomu nedostatek 
místa a vědomí, že hlavním úkolem sociolo­
gické metodologie v tomto oboru je vybrat, 
popřípadě navrhnout vhodné a interpretova- 
telné míry pro populaci. Proces zobecňování 
z výběrových souborů na cílové populace je 
záležitost jiná, pro sociologa stejně důležitá, 
avšak ještě techničtější (i když výběr infe- 
renční strategie plyne z úvah filozofických 
a z obecné statistické metodologie). Čtenáře, 
který se zajímá o inferenci spojenou s uvá­
děnými koeficienty, odkazujeme na uvede­
nou literaturu. Dále chceme zdůraznit, že se 
zabýváme (stejně jako v [14]) měřením sta­
tistické závislosti určitého typu, že se pohybu­
jeme na poli technické části metodologie, na 
poli matematických abstrakcí odvozovaných 
z různých konkrétních věd.1 Nejdeme a ani 
nemůžeme jít za hranice statistické interpre­
tace, a to ani do problematiky filozofického

rozboru pojmu závislosti, ani do interpretací 
konkrétních sociologických dat.2

Značení, které používáme, je obvyklé ve 
statistické literatuře i v učebnicích, nebude­
me ho proto rozvádět v tabulce (odkazujeme 
na podrobnější ilustraci v 114]). Kontingenění 
tabulka, kterou tvoří kombinace dvou znaků, 
má rozměry r x s, kde
r — počet kategorií řádkové proměnné (po­

čet řádků tabulky)
.v = počet kategorií sloupcové proměnné 

(počet sloupců tabulky)3
U(j = absolutní četnost v poli ž-tého řádku 

a ý-tého sloupce tabulky
m. = součet absolutních četností v í-tém 

řádku
nj = součet absolutních četností v ý-tém 

sloupci
n = celkový počet případů v tabulce
PthPt.,P.j jsou obdobně relativní četnosti 

vzhledem k celkovému počtu n pří­
padů

Pjlt = relativní četnost j-té kategorie vzhle­
dem k případům v í-tém řádku Vppi = 
= ntjlm.')

Kategorie proměnných jsou uspořádány po­
dle vzrůstajících hodnot obou proměnných. 
Jedná-li se o asymetrický vztah, řádková 
proměnná je nezávislá (příčina, prediktor, 
časově předchází), sloupcová proměnná je 
závislá (důsledek, predikant, časově následu­
jící). Nezávisle proměnnou značíme X a její 
hodnoty Ni, X2, . . ., Xr, závislou proměn­
nou značíme Y a její hodnoty Yi, Y^,..., Y, 
(indexy u hodnot značí pořadí v jejich uspo­
řádání u znaku).

Ordinální a nominální statistická závislost

Mluvíme-li o ordinální asociaci či ordinální 
statistické závislosti, máme vždy na mysli

*) Je zajímavé, že právě na utváření ordinálních měr se sociologie podílela více než na tvorbě jiných statistických 
postupu. Plyne to z potřeby zpracování dat, která jsou velmi Často právě ordinálního charakteru.

2) Interpretace konkrétních dat vždy závisí na tom kterém případě a na posouzení používaného modelu závislosti 
a souvislosti proměnných jako celku.

3) V literatuře se také značí rozměry r x c, což pochází z angličtiny a mnemotechnicky naznačuje řádky (rows) 
a sloupce (columns).
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vztah dvou ordinálních znaků, tj. kategori­
zací s uspořádanými kategoriemi (hodnota­
mi). Statistická nezávislost se definuje stejně 
jako v nominálním případě — je to situace, 
ve které neexistuje žádná asociace, v níž 
nelze nalézt žádnou informaci, žádnou pre­
dikční schopnost jedné proměnné o druhé. 
Matematicky lze nezávislost vyjádřit dobře 
známou terminologií: očekávané četnosti jsou 
rovny skutečným empirickým četnostem

(1) »« =---- ~— resp. ptj = pt. . p.]

Tento vztah plyne ze vztahu (a je mu i ekvi­
valentní), který lépe odpovídá významu 
pojmu
(2) pj,t = p j pro všechna j a pro všechna i 
(řádkové relativní četnosti jsou stejné).

Pojem statistické závislosti je velice bo­
hatý na různé případy. Podle typu znaků 
můžeme rozlišovat i různé typy závislostí. 
Zatímco u kardinálních znaků můžeme zkou­
mat velmi jemné závislosti odpovídající růz­
ným funkcím (lineární, exponenciální, moc­
niny, polynomy, logické S-křivky), u nomi­
nálních znaků charakterizujeme pouze od­
chýlení od vztahu (1) nebo (2). U nominál­
ních znaků (vzhledem k jejich obsahu a smys­
lu) nesmí být míry statistické závislosti citli­
vé na permutování sloupců nebo řádků — 
musí mít tedy stejnou hodnotu při libovol­
ném uspořádání kategorií. Kardinální míry 
naproti tomu závisí mnohdy i na nepatrných 
transformacích hodnot.4

Ordinální znak stojí někde uprostřed mezi 
nominálním a kardinálním. Jelikož zde uspo­
řádání hraje velkou roli, nemůžeme libovolně 
permutovat a odtud plyne požadavek, aby 
ordinální míry byly citlivé na uspořádání 
hodnot znaku. Naprosto však nezáleží na 
tom, jaké hodnoty přisoudíme jednotlivým 
kategoriím, zda je například očíslujeme vze­
stupně počínaje jedničkou, či zda jim přiřa­
díme kód nějakého číselníku.

Ordinální znak reprezentuje vlastnost, je­
jíž stavy jsou odstupňovány. Podle této 
vlastnosti můžeme statistické jednotky úplně 
nebo částečně uspořádat (pomocí hodnot or- 
dinálního znaku je můžeme uspořádat pouze

částečně). Má tedy smysl hovořit o vyšším 
či nižším stupni vlastnosti a paralelně o vyšší 
či nižší hodnotě znaku. Při zkoumání statis­
tické závislosti ordinálních znaků nás proto 
zajímají nejen libovolné odchylky od stavu 
nezávislosti, ale i typ závislosti. Jakmile za­
vedeme nižší a vyšší hodnoty znaku, zajímá 
nás (a má smysl o tom uvažovat), zda se 
v populaci vyskytují současně vyšší (a tedy 
na druhé straně nižší) hodnoty u obou znaků, 
či zda se společně vyskytují vyšší hodnoty 
jednoho znaku s nižšími hodnotami druhého. 
U asymetrických situací s příčinnou inter­
pretací je pak zajímavé, zda nižší hodnoty 
nezávisle proměnné způsobují nižší či vyšší 
hodnoty závisle proměnné. V tomto se již 
projevuje ordinální statistická závislost, kte­
rou později u jednotlivých měr operacionál­
ně upřesníme. Intuitivní charakter pojmu je 
však tím dán. Z toho, co bylo řečeno výše, 
rovněž plyne, že má smysl hovořit o přímé 
a nepřímé statistické ordinální závislosti. 
O přímé závislosti mluvíme tehdy, párují-li 
se vysoké hodnoty X s vysokými hodnotami 
Y a nízké s nízkými. Nepřímá závislost vzniká 
tehdy, párují-li se nízké s vysokými. Míry 
ordinální závislosti jsou konstruovány tak. 
aby odrážely i tuto vlastnost (znaménko,,+ “ 
vyznačí přímou závislost, ,,—“ nepřímou).

Míry, které v další části uvedeme, jsou 
tedy konstruovány proto, aby charakterizo­
valy ordinalitu vztahu. Je zapotřebí zdůraz­
nit, že nula či nízké hodnoty koeficientů ne­
znamenají statistickou nezávislost či situaci 
jí blízkou. Ukazují pouze nepřítomnost ordi­
nální závislosti (což neznamená pochopitelné 
nezávislost) nebo její nízký stupeň.5 Proto 
také zkoumáme-li v sociologickém výzkumu 
závislosti u ordinálních znaků, počítáme ne­
jen míry ordinální, ale i nominální asociace. 
Případ současného výskytu nízké ordinální 
závislosti a vysoké nominální závislosti vy­
žaduje podrobnější analýzu rozložení čet­
ností v tabulce6 (někdy může rovněž indi­
kovat nedostatky při konstrukci znaků).

Znaménko u měr a jeho interpretace závisí 
na orientaci uspořádání kategorií znaku. Na­
příklad znak vlastnosti „důležitost určitého 
jevu pro respondenta“ může mít hodnoty 
orientovány (gradovány) od „nedůležitý“ až

*) Závisí ovšem na typu koeficientu, např. koeficient lineární korelace r je necitlivý na libovolné lineární transfor­
mace obou proměnných (s jediným omezením, že součin směrnic musí být kladný). ,

6) Chybná interpretace nízkých hodnot ordinálních měr je velmi častá; může vést a často vede k nepříjemným 
chybám v závěrech z dat.

•) Zde také možno vhodné využít znaménkových schémat, která pomáhají odhalit typ závislosti v tabulce se 
vyskytující pomocí obrazce plusových a minusových znamének.
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po „velmi důležitý“, ale může to být i na­
opak. Formálně matematicky je zcela libo­
Volné, kterou z obou možností použijeme při 
uspořádání kategorií v tabulce. Obsahově ji 
ovšem musíme přesně určit a hlavně na ni 
nesmíme zapomenout při interpretaci. Změ- 
níme-li totiž orientaci jedné proměnné, změ­
ní se znaménko koeficientu (při zachování 
absolutní hodnoty). Toto je logické, neboť 
struktura a vzájemné vztahy četností v ta­
bulce se nezmění, změníme-li například po­
řadí sloupců v opačné; četnosti jsou pouze 
zrcadlově obráceny a to se projeví na zna­
ménku.

Ordinální znaky byly ve vývoji statistiky 
značně zanedbávány. Zájem se soustředil na 
zpracování číselných výsledků a souběžně 
(i když daleko méně) na zpracování kontin- 
genčních tabulek s nominálními vstupy (sy­
stematické rozpracování a doplňování sta­
tistické teorie pro analýzu nominálních znaků 
začalo však poměrně nedávno a zdaleka ještě 
není ukončeno). Ordinální znaky byly studo­
vány v oblasti neparametrických technik, 
ordinální asociace v problematice neparame­
trických korelací. To ovšem odpovídá situaci 
prostých ordinálních znaků (uvažovala se 
data odpovídající úplnému uspořádání sou­
boru). Tento případ je pro sociologický do­
tazník netypický7, a proto tyto metody ne­
jsou pro analýzu dat sociologického dotaz­
níku vhodné.

První míry ordinální asociace vznikly 
úpravou neparametrických korelačních koe­
ficientů (Spearmanova a Kendallova) na si­
tuaci tzv. spojení (dvě nebo více jednotek 
má stejné pořadí). Stejné znamenalo původně 
nerozlišitelné, avšak v analýze kontingenč- 
ních tabulek byl tento význam přeměněn na 
nerozlišované. To bylo provedeno proto, že 
takto upravené korelační míry měly vhodné 
matematické vlastnosti a splňovaly poža­
davky na míry ordinální asociace. Jejich ne­
dostatkem bylo, že model vycházel z úplných 
uspořádání a že přechod od významu neroz­
lišitelné k významu nerozlišované spojení byl 
proveden poněkud lehce.

Přelom v používání měr statistické závis­
losti nastal po publikaci velice zásadních 
statistických článků [4], [5] a [6], které daly

podnět k požadavku pravděpodobnostní in­
terpretace a modelování racionálních zákla­
dů pro každou míru. Naší snahou je zavádět 
koeficienty, u nichž numerické hodnoty mají 
jednoduchou a pochopitelnou interpretaci 
a míry mají operacionalizací daný pevný 
obsah. Používání měr tohoto typu je už dnes 
běžné. Stupeň složitosti modelu je ovšem 
různý. U některých měr (Spearmanův koefi­
cient p) byl model nalezen a posteriori a je 
tak nejasný, že se prakticky nedá využít 
(viz [10]).

Nejjednodušší princip modelování měr je 
PRE-princip.8 Míry vznikají jako relativní 
úbytek chyby predikace závislé proměnné 
bez použití a při použití nezávisle proměnné 
v predikčním pravidle (viz např. [1], [4], 
[14]). Koeficient PRE je dán jako

(3) PRE = -
PII) - Plil) 

P^

kde P(/) je pravděpodobnost chyby predik­
ce Y bez znalosti X a P(1I) je pravděpodob­
nost chyby predikce Y s využitím znalosti X.

Volba predikčního pravidla je různá podle 
problému. U symetrického případu randomi- 
zujeme směr predikce — počítáme průměrné 
chyby predikce v obou směrech a používáme 
jejich průměr.

Shrňme intuitivní požadavky na míry or­
dinální statistické závislosti a doplňme je 
ještě dalšími, snadno pochopitelnými.

1. Míry ordinální statistické závislosti po­
užíváme v situaci, kdy hodnotíme vztah dvou 
ordinálních znaků, tj. vyhodnocujeme kon- 
tingenční tabulky, jejichž vstupy jsou dvě 
uspořádané kategorizace.

2. Nepředpokládáme spojitý charakter zna­
ků, tj. nepředpokládáme žádné kontinuum, 
které je kategorizaci podloženo; kategorie ne­
musí vznikat jako výseky na něm.

3. Rozeznáváme asymetrický a symetric­
ký případ podle toho, zda známe vztah pří- 
činnosti či následnosti, a podle typu závis- 
lostního modelu, který používáme (testuje­
me, zkoumáme).

4. Míra ordinální statistické závislosti a 
nemá smysl, když jsou všechna data koncen­
trována v jednom řádku či sloupci.

7) To ovšem neznamená, že neparametrioké techniky jsou pro sociologa neužitečné; situací, kdy jsou aplikovány, 
je mnoho — analýza malých skupin, analýza souhrnných populačních charakteristik, vyhodnocování různých speci­
álních situací, komparace atd.

8) PRE =■ Proportional-Reduction-in-Error; je to princip vyjádřený Guttmanem při konstrukci X koeficientu 
predikce.



5. — 1 ^ a ^ 1 odráží požadavek norma­
lizace měřicí stupnice, který je motivován 
především zvykem a vhodností (hranice pro 
a je ovšem libovolná a mohla by být zvolena 
jakkoli .9

6. a= 1, když nastává perfektní přímá 
ordinální závislost ve smyslu operacionaliza- 
ce dané zvoleným modelem.

7. a= — 1, když nastává perfektní nepří­
má závislost.

8. a = 0 znamená absenci ordinální zá­
vislosti, neznamená nezávislost; a = 0 je 
ekvivalentní statistické nezávislosti pouze 
pro tabulky 2x2 (dvouhodnotové znaky).

9. a je závislá na uspořádání řádků 
i sloupců, je nezávislá na číselném ohodno­
cení kategorií.

10. a změní znaménko, když změníme po­
řadí kategorií u jednoho ze znaků na pořadí 
právě opačné (inverze pořadí hodnot jednoho 
znaku);

a se nezmění, změníme-li pořadí hodnot 
u obou znaků v pořadí právě opačná.

11. U symetrických měr nezáleží na tom, 
která z proměnných je řádková a která 
sloupcová. U asymetrických měr záměna 
proměnných vede k jiné hodnotě koeficientu.

Rozlišení asymetrického a symetrického 
případu je obzvláště důležité při vyhodnoco­
vání závislostí ve složitějších schématech, 
kde se objevují souběžně oba případy a kde 
potřebujeme pro oba srovnatelné koeficienty.

Důležitý případ vyhodnocení závislosti je 
sledování konzistence indikátorů určité pro­
měnné. Mezi nimi nejsou přímé vazby, jejich 
vztah je zprostředkován vlivem proměnné, 
jejímiž projevy jsou. Jejich vazba je tedy 
symetrická, je to korelace hodnot, která ne­
odráží kauzální vztahy, ale tu skutečnost, že 
jde o manifestní projevy téže proměnné, 
která sama není přímo zjistitelná.

Přestože mezi specialisty panuje názor, že

každý vhodný a použitelný koeficient statis­
tické závislosti byl už někdy nalezen a po­
užíván. domníváme se, že na poli ordinálních 
znaků tomu tak není a že zbývá ještě mnoho 
práce, než budeme v praxi analýzy dat plně 
uspokojeni.

Přístupy k měření asymetrické ordinální 
závislosti

Právě u asymetrických vztahů bychom oče­
kávali PRE koeficienty, a proto absenci to­
hoto nebo jiného vhodného modelu zde tíživě 
pociťujeme. Známé PRE interpretace mají 
Goodman-Kruskalovo y, Kendallovo tc a So- 
mersovo d.

Podobné interpretace dále mohou mít koe­
ficienty pro kardinální znaky, které využí­
vají skoro vání znaků, nebo koeficienty, které 
byly odvozeny pro symetrický případ. Vět­
šina koeficientů je založena na paralele k li­
nearitě, z čehož plyne, že pro symetrický 
a asymetrický případ nabývají stejné hod­
noty. Asymetričnost se pak musí odlišit in­
terpretačně.10

Přístupy k měření symetrické ordinální 
závislosti

Symetrické míry by měly vznikat symetrizací 
PRE asymetrických koeficientu (stejně jako 
v případě nominálních znaků, viz [14]). 
Většina měr je založena na pojmu shody a 
neshody (concordance a discordance) dvojic 
a jejich poměru k různým jmenovatelům: 
shodou u dvojice jednotek A, B nazýváme 
případ, kdy relace pro obě jednotky jsou 
stejné jak vzhledem k X, tak vzhledem k F; 
neshodou, jsou-li opačné. Na míry asociace 
vede jednoduchý princip: čím více je shod 
mezi všemi dvojicemi, tím vyšší je přímá 
závislost; čím více je neshod mezi všemi dvo-

’) K požadavku normalizace bylo již řečeno mnoho; někteří autoři vyžadují, aby horní hranice (jednička), resp. 
dolní hranice (minus jedna) byly za všech případu dosažitelné. Obdobně u nominálních měr, byly chí-kvadrátové 
koeficienty normovány různými způsoby, aby mohly vždy dosáhnout jedné. 'Pákový požadavek Je však dost i umělý 
a není zcela opodstatněn. Je motivován především snahou po vytvoření absolutního kardinálního znaku, který by 
umožňoval srovnatelnost různých tabulek (o různých velikostech souboru a různých rozměrech) a zároveň umož­
ňoval posouzení jedné samostatní* tabulky porovnáním číselné hodnoty k oběma krajním hodnotám. Jednička má 
v našem případě znamenat úplnou ordinální závislost. To ovšem neodpovídá obdélníkovým tabulkám, kde je úplná 
závislost nedosažitelná. Znak také není absolutní podstatou, ale konvencí, je to většinou znak pomocný. Daleko 
vhodnějším přístupem je operacionalizace pravděpodobnostním modelem (např. PRK), který umožňuje obsahovou 
interpretaci výsledného čísla bez ohledu na to. je-li krajní hranice dosažitelná, či ne. Požadavek normalizace ovšem 
odpovídá zvyklostem a nelze proti němu nic namítat (naopak); poznámka směřuje pouze k problému dosažitelnosti 
krajních hodnot 4-1, — 1, které jsou ovšem voleny zcela přirozeně.

10) U nominálních závislostí máme jednoduché modely, které rozlišují asymetrický a symetrický vztah. U ordi­
nálních závislostí už, bohužel, takové jednoduché zázemí nemáme. Costner [1] říká, že vzhledem k určitým vlast­
nostem koeficientu y není třeba konstruovat asymetrické míry a že pro takové případy můžeme též použít y. S tím 
nelze souhlasit, protože, ač je y koeficient dobrý a má symetrickou i asymetrickou PŘE interpretaci, není zdaleka 
ideální. PRE interpretace koeficientu je prováděna vzhledem k jistému predikčnímu pravidlu, které má určité 
nedostatky.
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jicemi, tím vyšší je nepřímá závislost. Pro­
blémem zůstává, co se spojeními v jedné nebo 
v obou proměnných. Podle způsobů, jimiž je 
zahrneme do modelu, dostáváme různé koe­
ficienty. Jednotlivé pojmy tohoto přístupu 
rozebereme v dalším oddílu společně s uve­
dením výpočetních algoritmů.

Druhý přístup pro symetrické asociace je 
velice příbuzný. Spočívá v aplikaci obecného 
koeficientu korelace, který navrhl Daniels 
([7], [8]).

r_ "LHaubti 
\ * / / —----------- ... — .

Vs^ SS6?,

Dvojitá suma značí součet přes všechna i 
a všechna j: «y, btj jsou skóre, která charak­
terizují vztah dvojice (i-tého a j-tého prvku 
souboru) vzhledem k X a Y. Tento koeficient 
byl původně určen pro případ různých pozo­
rování, tj. pro případ, kdy se v datech ne­
vyskytují žádná spojení. Lze z něho odvodit 
Spearmanův a Kendallův koeficient pořado­
vé korelace i Pearsonův koeficient lineární 
korelace pro kardiální znaky11. I když dá­
váme přednost měrám, které jsou modelem 
nějakého obsahu, chceme zdůraznit, že apli­
kace vzorce (4) je zcela legitimní a že je 
vhodná především pro případ, kdy je vztah 
zprostředkován nějakou další proměnnou, 
tj. kdy jde (obsahově) o zprostředkovanou 
korelaci a nikoli o vzájemnou závislost (např. 
výše uvedený případ indikátorů jedné pro­
měnné).

Počet shod a příbuzné pojmy

Nyní zavedeme základní pojmy, z nichž po­
čítáme dnes nejpoužívanější koeficienty y, 
d, tc, a ukážeme jejich algoritmy. Vzorce 
koeficientů jsou výpočetně značně kompliko­
vané, a proto vedle nich uvádíme i výpočetní 
postupy tak, jak je v praxi provádíme. Nu­
merické příklady budou uvedeny na konci 
článku. Značení dodržujeme podle [15].

a) Požet dvojic. V celém souboru předpo­
kládáme n jednotek, které tvoří Qj = 

n(n — 1) .
= ----- 2----  dvojic.

b) Shody. Shoda u dvojice (X, S) nastává 
tehdy, když nastává současně

XA<XB, Ya< Yb
nebo

Xa > XB , Ya > Yb

Páry, u nichž jsou relace takto souběžné, na­
zveme konkordantní. Jejich počet určíme po­
dle vzorce

(5) P = V ^«tj 5 ^Hp,
l j p>lq>j

Výpočet provádíme tak, že ke každému poli 
tabulky (s četností nj^ přiřadíme plochu polí, 
která jsou současně pod ¿-tým řádkem (níže) 
a za j-tým sloupcem (napravo) a nalezneme 
součet všech četností v této ploše (tak do­
staneme 2 2 npq). Tento součet násobíme 

p>'q>j v
četností ntj. Pro každé pole tabulky dosta­
neme jeden takový součin. Nakonec všechny 
tyto součiny sečteme. Součty, které odpoví­
dají polím posledního sloupce a posledního 
řádku, jsou nuly.

c) Neshody. Neshoda u dvojice jednotek 
J, B nastává tehdy, když platí současně:

nebo
Xa > Xb , Ya < Y b

Xa<Xb, Ya> Yb

Páry, u nichž se vyskytují neshody, se nazý­
vají diskordantni. Jejich počet Q je dán 
formulí:

(6) Q = S ž>o
• i

S S npq 
p>i q>j

Výpočet provádíme podobně jako u shod. Ke 
každému poli (¿,ý) nalezneme všechna pole, 
která leží níže a nalevo od tohoto pole. Zjis­
tíme součet četností celé takové plochy a ná­
sobíme ho četností ntj. Sečtením všech těchto 
součinů dostaneme Q. Součty odpovídající 
polím prvního sloupce a posledního řádku 
jsou nuly.

d) Spojení, která nastávají pouze u X. Je 
to případ dvojice zl, B, u níž platí současně

XA = Xb , Ya > Yb
nebo

Xa=Xb, Ya<Yb

11) Pearsonovo r dostaneme tak, že dosadíme mj = Xi — Xj, bij = Yi — Yj; tím dostaneme v čitateli dvojná­
sobek kovariance proměnných X a F a ve jmenovateli geometrický průměr dvojnásobků variancí X a Y (X a Y 
jsou v tomto případě ovšem číselné proměnné).
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Počet -Yo takových dvojic spočteme podle 
formule:

(7) Xo = v ^ 2 ntq
i j q>j

Vlastní výpočet provádíme takto: ke každé­
mu poli (i,ý) vezmeme všechna pole napravo 
ve stejném řádku a v takto vzniklém pásu 
sečteme četnosti ( V ntqY získanou hodnotu 

q>j
násobíme číslem na; součiny pro všechna 
pole tabulky sečteme a výsledek je Xq. Sou­
činy příslušné polím v posledním sloupci 
jsou nuly.

e) Spojeni, která nastávají pouze u F, 
vznikají tehdy, platí-li pro -4, B, současně:

XA>XB, Ya=Yb 
nebo

XA <XB, Ya=Yb

Součet těchto dvojic označíme Fq, přičemž

(8) Fo = S S«W 2 ^p>
* 3 p>i

Výpočet provádíme takto: ke každému poli 
(í, ý) vezmeme všechna pole směrem dolů ve 
stejném sloupci a v takto vzniklém pásu se­
čteme četnosti ( 2 ^pjY, další postup je stej- 

p>í
nýjako vdY

f) Současná spojení u X a Y nastávají 
tehdy, když platí pro A, B současně:

XA=XB, Ya=Yb

Jejich počet Z je dán vzorcem:

(9) Z = | 5 TďiAna — 1) 
‘ 3

g) Počet párů, u kterých není spojení 
vzhledem k X, označíme Xu, přičemž

(10) Xu = P + Q + Fo

(11) = SS^í.n*.
i<k

(12) = i(n2 - M.)
♦

Výpočetně nej jednodušší je vzorec (12), ne- 
potřebujeme-li současně znát Fo.

h) Počet párů, u nichž není spojení vzhle­
dem k Y, vypočteme podle vzorců
(13) Yu=P^Q^Xft

(14) = SS "-.^.k
j<k

(15) = i(m2 - Sn2/
i

Nepotřebujeme-li znát Vo, pak výpočetn6 
nejjednodušší je vzorec (15).

Hodnoty a)—h) vystupují u většiny koe­
ficientů. Platí identita12
(16) P + Q + Xo -j- 1 o - 2 =

= počet všech párů = |n(/t — 1)
H) Goodman-Kruskalovo gama
V práci [4] navrhli autoři koeficient, který 
vychází z jednoduché úvahy, že čím více na­
stane shod, tím vyšší bude pozitivní (přímá) 
asociace, a čím více neshod, tím vyšší bude 
negativní (nepřímá) ordinální asociace. Koe­
ficient je založen jen na těch dvojicích, 
u nichž nenastává žádné spojení. Všechna 
spojení jsou jak z úvah, tak z výpočtů eli­
minována13. Koeficient je zadán velice jed­
noduše jako rozdíl pravděpodobností dvou 
jevů: 1. u náhodně zvolené dvojice jednotek 
nastane shoda, 2. u náhodně zvolené dvojice 
nastane neshoda; obojí za podmínky, že ani 
u X. ani u F nenastane spojení.14 Tedy 
(17) Y = P (shoda/není spojení) —

— P (neshoda/není spojení)
P (shoda) — P (neshoda)

' 1 — P (spojení)
Výpočetní vzorec a zároveň nejjednodušší 
vyjádření vztahu (17) je

<1»)

K výpočtu y tedy stačí znát počet shod P 
a počet neshod Q. Základní vlastnosti koe­
ficientu y:

a) není definován, jsou-li data soustředěna 
pouze v jednom řádku nebo sloupci;

b) -1 žy ž 1;
c) y = 1, právě když existují kromě spo­

jení samé shody, tj. Q = 0. Příklady na

u) Vztah (16) používáme při ručních výpočtech v£dy jako kontrolu.
13) Tento fakt je nepříjemným aspektem koeficientu. Spojení jsou důležitou složkou relačního komplexu, který 

z hlediska uvažovaných znaků vzniká na dané populaci. Jejich zanedbávání je proto ochuzením — projeví se to 
u vlastnosti koeficientu zvláště u nejednoznačnosti interpretace krajních hodnot, která zahrnuje širokou třídu/nožných 
případů. . .

“) To znamená, že náhodný výběr dvojice provádíme jen v tom souboru, u něhož se vyskytují jen shody nebo 
neshody, všechna spojení jsou eliminována. V takovém podmíněném souboru je P + Q dvojic a rozdíl pravděpodob­
ností proto vede na vzorec (19). Ekvivalentně ie to postup: vybereme dvojici a zjistíme, zda u ní existuje spojení 
(pravděpodobnost takového jevu je P (spojení)). Jestliže se vyskytuje spojení, dvojici neuvažujeme — neodpovídá 
podmínce a podmíněným pravděpodobnostem v (17). Odtud pak plyne (18). '
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y = 1 (viz [4]) naznačíme v tabulkách obr. 1, 
kde křížek značí obsazené pole; nezakřížko- 
vané pole znamená nulovou četnost.

koeficientem pořadové korelace r. Má-li ta­
bulka rozměry 2x2, pak je y totožné s nu­
lovým koeficientem asociace Q

Obr. 1

d) y = —1, právě když v tabulce jsou 
kromě spojení samé neshody, tj. P = 0. Za 
příklady mohou sloužit zrcadlově převráce­
né případy z obr. 1.

e) y = 0, právě když počet shod je stejný 
jako počet neshod (P = Q); y = 0 při nezá­
vislosti, opačná implikace však obecně ne­
platí, platí pouze u tabulek 2x2.

Obr. 2 ukazuje případ, kdy je y = 0 
a přitom nejde o statistickou nezávislost 
(křížky značí stejné nenulové četnosti).

(20) y = Q —
P11P22 — P12P21

P11P22 + ^12^21

71117122 — ai2«2i

71117122 + 71121121

Z obrázků a z úvah o shodách a neshodách 
v kontingenčních tabulkách lze získat cit pro 
význam pojmu ordinální statistická závis­
lost ve smyslu koeficientu y. Pro úplnost 
uvádíme také PRE-intcrpretaci modelu. (Au-

Obr 2

f) y závisí na uspořádání řádků a sloupců;
g) y změní znaménko, když převrátíme 

pořadí kategorií u jednoho znaku; y se ne­
změní, převrátíme-li pořadí u obou znaků;

h) y se nezmění při záměně sloupcové pro­
měnné za řádkovou a naopak.

Aplikujeme-li y na úplné uspořádání je­
dinců (oba znaky mají tolik hodnot, kolik je 
jedinců v populaci, jde tedy o prosté ordi­
nální znaky), je y totožné s Kendallovým

toři koeficientu ho nazývají koeficientem za­
loženým na optimální predikci pořadí.) Uva­
žujme situaci, v níž u náhodně vybrané dvo­
jice A, B chceme určit relaci k Y, tj. zda 
Ya < Yb nebo Ya > Yb. Vzhledem k ná­
hodnosti výběru se můžeme rozhodnout pro 
jeden ze vztahů s pravděpodobností |, nebo 
(což je totéž) prostě prohlásit Ya > Yb (pre­
dikční pravidlo I.). Chyba takové predikce 
(za předpokladu vynechání všech spojení) je
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0,5. Při znalosti relace vzhledem k X zvolíme 
jednoduché pravidlo II pro predikci vztahu 
v Y (opět vynecháme všechna spojení): je-li 
Xa > Xb, předvídáme Ya > Kb při y > 0 
a Ya < Yb při y < 0 15 a obdobně pro 
opačnou relaci v X. Pravděpodobnost chyby16

. V I
při predikčním pravidle II je 0,5 — -^- , 

a tedy
PRF_ PW-emPRE-----------^-------

0,5
= Ir I -

Z tohoto modelu plyne možnost asymetric­
kého použití koeficientu. Symetrický model 
relativní redukce pravděpodobnosti chyby je 
stejný jen s tím rozdílem, že při predikci se 
nejprve s pravděpodobností 0,5 rozhodujeme 
o směru predikce, tj. o tom, která z proměn­
ných bude nezávislá a která závislá. Protože 
pojmy shody a neshody jsou oba symetrické 
ve své podstatě, je koeficient po uvedené 
symetrizaci zcela stejný jako pro asymetric­
ký případ, a tedy i hodnoty numerické bu­
dou pro danou tabulku stejné, ať už má sy­
metrickou či asymetrickou interpretaci. I ten­
to malý příklad ukazuje, jak opatrně je třeba 
přistupovat k číselným výsledkům. Shod­
nost asymetrické a symetrické formy koefi­
cientu je paralelní k Pearsonovu koeficientu 
lineární korelace17.

Koeficient y se dobře hodí pro výzkumnou 
práci, a to i přes nejednoznačnost situací 
charakterizovaných krajními hodnotami ±1, 
které nelze jednoznačně interpretovat v ter­
mínech struktury tabulky.

B) Kendallův koeficient pořadové korelace — 
znaménková korelace
Kendallův koeficient pořadové korelace t byl 
původně zaveden pro případ úplného uspo­

řádání objektů vzhledem k oběma proměn­
ným. Vychází (podobně jako y) ze souběž­
nosti relací u všech párů souboru. Název 
„koeficient znaménkové korelace“ pochází 
z definice, která je založena na počtu shod, 
neshod a Danielsově koeficientu (4), ve kte­
rém jsou zavedeny skóre a, 6 jako znamén­
ka. Skóre pro X jsou oab, přičemž

oab = +1 , když XA > XB
aAB= — 1 , když ^ < XB

Obdobně jsou definovány skóre Bab pro pro­
měnnou Y. Shoda nastane právě tehdy, když 
aAs ■ Bab = +1, neshoda právě tehdy, když 
«ab • BAb - — 1 •

M. Kendall zavedl veličinu

(21) 28 = 2 S uab • bAB ,
.4 B

což v našem značení není nic jiného než18

(22) 8 = P - Q
= počet shod — počet neshod

Koeficient r vzniká normalizací 8 na počet 
všech dvojic

_ ____ 8____
(23) T »(n — 1)

2

= 2(p t w
n^n — 1)

Pro kontingentní tabulky tento koeficient mo­
difikujeme tak, že uvažujeme spojení u kaž­
dé dvojice, která padne do jedné kategorie. 
Máme tři možnosti:

a) ponecháme původní výraz s vědomím, 
že vzhledem ke spojením nemůže koeficient 
nabývat hodnoty ± 1; tak dostaneme koefi­
cient

(24) P Q 
^n {n - 1)

Pravděpodobnostní vyjádření (v pojmech 
modelu náhodného výběru dvojic jako u y):

“) Je-li y = 0, pak predikci pro relaci I provádíme s pravděpodobností 0,5 pro jednu možnost a se stejnou pravdě­
podobností pro druhou možnost.

ie) Pro kladné i záporné gama nalezneme: ,y| = P (správná predikce) — P (chybná predikce),, z čehož plyne, že 
|y| = |1 — 2P (chybná predikce)] a dále, že |P (chybná predikce) | = 0,5 — I -£-| .

17) t vzniká jako speciální případ koeficientu (4); současně je to parametr dvourozměrného normálního pravdě­
podobnostního modelu, ve kterém také odpovídá vzájemné vazbě proměnných; zároveň je r* relativním úbytkem 
chyby při predikci jedné proměnné pomocí druhé proměnné za použití lineárního modelu (asymetrická PŘE in­
terpretace).

”) Ve (21) vystupuje dvojnásobek hodnoty S proto, že při sčítání počítáme každou dvojici dvakrát (jako .4, B) 
a (B, >1), přičemž v obou případech nastane bud shoda, nebo neshoda.

82



P (shoda) — P (neshoda). Zde, na rozdíl od 
podobného výrazu pro y, vystupují nepod­
míněné pravděpodobnosti. Proto ani jedna 
z pravděpodobností, a tedy ani koeficient |ra| 
nemohou být rovny + 1, existují-li spojení.

b) Upravíme koeficient dosazením modifi­
kovaných skóre a, b do Danielsova obecného 
vzorce (4). K výše uvedené konvenci ještě 
přidáme

&ab = 0 , když A .4 = Xb

^ab — ^ , když y.4 = Yb

Vzniklý koeficient se v literatuře značí jako 

o. _ P-Q________
(25) |y(n2 -^"S n;.f (ro2T7S^)

q _ P^Q _ _
'^P A Q + Xo {P + Q + Fo)

(27) =JP"-Q-( J Vyu :
Koeficient tj, dosahuje hodnot ¿1 pouze 
v případech čtvercových matic 19, a to 
tehdy, když data jsou soustředěna na diago­
nále jdoucí od levého horního rohu k pravé­
mu dolnímu rohu Vtb = +1) nebo na diago­
nále jdoucí od pravého horního rohu k levé­
mu dolnímu (r& = —1). Z toho je vidět, že 
se Te hodí pro zkoumání reliability ordinál- 
ních znaků při metodě opakovaného testo­
vání (test — retest) a při zkoumání shod vý­
povědí s objektivními stavy.

c) Stuart [18] navrhl modifikaci koeficien­
tu r tak, aby mohl dosahovat krajních hod­
not + 1 při všech tvarech tabulky. Koeficient 
se značí tc a je dán výrazem

(28) 2m(P - (?) 
n^m — 1)
n — 1 w

=------------------ ," Tttn m — 1

kde m = min (r, s). Ve výzkumné práci se tc 
téměř nevyskytuje.

Ze tří variant Kendallova koeficientu po­
užíváme nejvíce t». Kromě uvedené specifi­
kace Danielsova P má koeficient PRE inter­
pretaci, o které referuje Wilson [19].

Vlastnosti koeficientu r»:
a) není definován, když data jsou soustře­

děna v jednom řádku nebo v jednom sloupci 
tabulky;

b) — 1 ^Tb ž 1, přičemž krajních hod­
not dosahuje jen u čtvercových tabulek (po 
vynechání prázdných sloupců a řádků);

c) re = 1 právě když jsou všechna data 
v hlavni diagonále přímé závislosti;

d) r» = —1 právě když jsou všechna 
data v hlavní diagonále nepřímé závislosti;

e) Tb = 0 právě když P = Q; nejde tedy 
o nezávislost, ale o ordinální nekorelovanost 
ve smyslu stejného počtu shod a neshod; 
Tb = 0 je ekvivalentní se statistickou nezá­
vislostí pouze u čtyřpolních tabulek;

f) Tb je závislé na uspořádání řádků 
a sloupců;

g) Tb změní znaménko, když změníme po­
řadí kategorií u jednoho znaku v opačné; 
Tb se nezmění, když provedeme tuto změnu 
u obou proměnných.

Pro tabulky 2 x 2 je koeficient roven kore­
lačnímu koeficientu r pro čtyřpolní tabulku, 
u níž jsou vyšší hodnoty znaků kvantifiko­
vány jedničkou a nižší nulou (indikátorové 
znaky vyšších hodnot příslušných vlast­
ností)20.

(29)

(30)

«117122 — >7217712
Tb = "iT™

711 . »2.71 . 1 « . 2

Koeficient t je odvozen pro symetrickou 
korelaci proměnných. Výše uvedený odkaz 
[19] uvádí asymetrickou PRE interpretaci, 
která může být ovšem snadno symetrizová- 
na; výsledek je týž.

C) Somersovo d
Somers [15] vyšel z analogie s lineárním mo­
delem pro kardinální znaky, v němž platí

7"2.ry = bxY • byx

(korelační koeficient je geometrickým prů­
měrem obou regresních koeficientů), a poku-

’•) To plyne ze vzorce (4) a ze známé Cauchyovy nerovnosti: rovnost jmenovatele a čitatele (v absolutní hodnotě) 
nastane právě tehdy, kdvž a^ = k . bij, (k může být bud 4 1 nebo — 1), a z toho pivně, že všechna data musí být 
soustředěna na jedné z hlavních diagonál (ovšem po vynechání všech neobsazených sloupců a řádků.)

“) Kvantifikace nulou a jedničkou je nepodstatná, protože koeficient korelace je invariantní k lineárním trans­
formacím s kladným součinem směrnic a každá dvojice stejně orientovaných hodnot je převod itelná na čísla 0, 1; 
u dvouhodnotových znaků je tedy z technického hlediska intervalový znak totéž co ordinální znak.
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sil se o asymetrizaci založenou na stejném 
principu. Jelikož platí:

T26 = kP-Q^ 
XU YU

P-Q
Xu

P- Q
Yu

můžeme vybrat souběžně k regresním koefi­
cientům oba činitele jako míry asymetrické 
ordinální statistické závislosti; označme je

(31) dy/x = Xu

(32) P-Q
P + Q+Yo

(33) 2(P - Q)
712 — ^»í

(34) dx/Y =
P-Q

Yn

(35) P-Q
P + Q + X,

(36) =
2(P - Q) 
n2 - ŽX,

dy/x je mírou vztahu X -> Y, v němž X je 
nezávislá a Y závislá proměnná; u dx/Y je 
tomu naopak.

Koeficient můžeme též zavést pravděpo­
dobnostně (pravděpodobnosti se vztahují 
k náhodně zvolené dvojici jednotek):

dy/x = P (shoda/u X nenastalo spojení) — 
— P (neshoda/u X nenastalo spojení).

Bez ohledu na PRE-interpretaci, pravdě­
podobnostní zavedení je rozumné — je to 
počet shod u těch dvojic, u nichž můžeme 
predikovat pořadí v Y, tj. u nichž není spojení 
v nezávislé proměnné X.
Vlastnosti koeficientu:

a) není definován, jsou-li data umístěna 
pouze v jednom řádku nebo v jednom sloup­
ci tabulky;

b) —1 ^ dy/x ^ 1;
c) dy]x = 1 právě když Q = 0 (nevysky­

tují se neshody) a zároveň Xo = 0 (neexistu­
jí dvojice spojené v Y a nespojené v I); to 
může však nastat jen tehdy, jsou-li data 
soustředěna v hlavní diagonále přímé závis­
losti (po vynechání neobsazených řádků 
a sloupců);

d) dy,x = — 1 právě když P = 0 a Xq = 0, 
což může nastat jen tehdy, když jsou data 
soustředěna v hlavní diagonále nepřímé zá­
vislosti;

e) dy/x = 0 právě když P = Q; tento 
případ reprezentuje ordinální nezávislost, 
nikoli statistickou; s tou splývá pouze u čtyř- 
polních tabulek;

f) dy/x závisí na uspořádání řádků a 
sloupců;

g) při změně pořadí kategorií u jedné pro­
měnné v opačné se změní znaménko koefi­
cientu; při této změně u obou znaků se koe­
ficient nezmění;

h) koeficient se změní při záměně sloup­
cové proměnné za řádkovou a naopak (asy- 
metričnost);

i) oba koeficienty dy,x a dx/y mají stej­
né znaménko.

U tabulek 2x2 je dy/x totožné s rozdílem 
relativních četností Ryíx, který je mírou 
asociace pro čtyřpolní tabulky v asymetric­
kých případech.

(37) dy/x = Ry/x =
»1.

»21

»2.

(38) 71117122 — »12»21

711.712.

Somers se v práci [15] snaží ukázat, že i ve 
větších tabulkách odpovídá dyjx rozdílům 
četností.

Somersův koeficient má velmi dobré vlast­
nosti, má jasně definované polohy (±1), má 
pravděpodobnostní zázemí, které se zdá být 
rozumné. Existuje u něj analogie k lineární­
mu modelu, u tabulek 2x2 je totožný s nej­
jednodušší a nejpoužívanější mírou asyme­
trického vztahu Ry/x- Jeho aplikaci je mož­
no v asymetrických případech doporučit. 
PRE interpretaci lze nalézt v [17].

D') Symetrizovaný Somersův koeficient d
Koeficienty dy-x a dx/y vznikly asymetri- 
zací koeficientu t», který lze proto považo­
vat za symetrickou variantu Somersova koe­
ficientu.

V [11] uvádějí autoři programu SPSS ji­
nou symetrizaci. Je provedena stejně jako 
v PRE modelech: randomizací směru pre­
dikce. Vzniklá míra má velmi dobré vlast­
nosti a rozumný obsah numerických hodnot; 
s koeficientem můžeme dobře pracovat.

(39)

(40)

d= P~Q
i(Xu + yu)

= 2[P-Q] _ _
H(n2-S<.) + (»2-Sť>)]
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Vlastnosti jsou tytéž jako u asymetrického 
koeficientu, až na to, že á se nezmění, zamě­
níme-li sloupcovou a řádkovou proměnnou.

Pro čtyřpolní tabulky dostáváme jedno­
duchý tvar

(41V d — 71117122 — ni2n2i
J l(ni.n2. + n.^)

Zatímco Ti, je geometrický průměr veličin 
dy,x & dx.y, je d jejich harmonický průměr.

E) Spearmanův koeficient pořadové korelace 
pro kontingentní tabulky
Spearmanův koeficient g vzniká tak, že do 
obecného Danielsova koeficientu (4) dosadí­
me skóre, která jsou definována jako rozdíly 
pořadí u jednotlivých proměnných:

a^B = rozdíl pořadí dvou objektů A a B 
vzhledem k uspořádání V,

b^B = rozdíl pořadí A a B vzhledem 
k uspořádání Y.

Tento předpis vede na obvyklý vzorec pro « 
v situaci prostých ordinálních znaků. Pro 
kontingenční tabulky se koeficient p adap­
tuje na spojená pořadí, vznikající uvnitř ka­
tegorií znaků a značí se gb- Vzorec opět ply­
ne z Danielsova koeficientu (4). Výpočet je 
založen na jiných charakteristikách než před­
cházející koeficienty. Uvádíme ho v postup­
ných krocích.

1) Určení pořadí (spojených) pro jednot­
livé jednotky. Pro znak X máme v za 
sebou jdoucích kategoriích postupně četnosti 
”1., >12.» 773.,..., 77r_. Kdyby byly všechny 
jednotky rozlišitelné, měly by pořadí 1, 2, 
3,. . ., n. Nyní však je spojeno ny jednotek, 
které by stály na místech 1,2,3....... ny.. 
Proto jim všem přiřadíme průměrné pořadí 
m -|- 1 ,
—----- . Dalších n2. jednotek by mělo při

úplném uspořádání pořadí ny + 1, «1. + 2, 
.. ., ny 4- «2., nyní jiní opět přiřadíme 

o , v 2ni. + no. + 1 ~ .průměrně poradí - . Stejne 

postupujeme dále. Pro znak V dostaneme 
tedy pro jednotlivé kategorie průměrná pořadí 
m. + 1 2«i. 4-712.+ 1 2t?i. 4-2/í2. 4-713. 4-1 
~2 ’ 2 ’--------------2------------- ’

2«i. 4- 2n2. 4- - • • + 2nr y 4- nr. 4- 1 
.

Obdobně pro znak T dostaneme pro jednot­
livé kategorie průměrná pořadí

71.! 4- 1 2n.i 4*77.2 + 1 2to. 1 4-277.2 4-71.3 4- 1, 
2 ’ 2 ’ 2—

2n.i 4- 2n2 4- • ■ • 4* 2n,8-i 4- 77.$ 4- 1
‘ ‘ ’ 2 '

2) Výpočet veličiny S(d2)= £(Jlx — l'x)2;
A

X4 je pořadí jednotky A v proměnné X 
a Ya je pořadí v Y (jde o pořadí zjištěná 
v kroku 1). Pro každé další pole tabulky 
(i,ý) zjistíme rozdíl skóre X(i?) — Y^j), umoc­
níme ho na druhou a vynásobíme četností 
pole. Tak dostaneme:

(42) 8^ = vy „^[^(0 _ y(j)p;
-X(í) je pořadí přiřazené (v kroku 1) i-tému 

řádku tabulky,
Y^j) j® pořadí přiřazené (v kroku 1) J-tému 

sloupci tabulky.
3) Výpočet veličin T, U

(43) T = -^ ? W _ Hi^

(44) U = S ^ _ Wj)
j

4) Dosazení do vzorce pro gb

„rx i (n3 - «) - S(d2) - T - U (45 gb = ------- — -------- ——
y[í(773-»)-2T] . [j(n2-n)-2U]

Po určení průměrných pořadí pro jednotlivé 
kategorie Xy Yj, můžeme hodnoty průměr­
ných pořadí N(z), T(j) považovat za skóre 
a dosadit je do vzorce pro výpočet Pearso- 
nova lineárního korelačního koeficientu. Vý­
sledek bude stejný jako výsledek získaný 
výše uvedeným algoritmem (42) — (45).

V literatuře ([10]) lze najít dosti složitý 
pravděpodobnostní model pro koeficient g, 
jehož interpretace je však pro praktické po­
užití značně obtížná.

Koeficient Qb je symetrický a výrazně vy­
jadřuje korelovanost hodnot pořadí (člen 
S^d^Y Můžeme jej interpretovat také jako 
lineární korelaci mezi pořadími. Proto může 
mít i asymetrickou interpretaci v modelu, 
v němž hledáme lineární predikci pořadí 
znaku T pomocí pořadí znaku X u daného 
objektu. Pak má i jednoduchou PRE inter­
pretaci: predikci pořadí pomocí přímky.
Vlastnosti:

a) gb není definován, jsou-li hodnoty sou­
středěny v jednom řádku nebo v jednom 
sloupci tabulky;

b) — 1 g Qb ^ 1; krajní hodnoty dosahu-' 
je pouze v případě, že pro všechny dvojice
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.4, B platí N^ — Xb = k^Yx — I7b), (^ je 
konstanta), což znamená, že krajních hod­
not lze docílit pouze ve čtvercové tabulce 
(po vynechání prázdných sloupců a řádků), 
a to jen tehdy, když jsou data rozložena 
v jedné z hlavních diagonál;

c) pb = 1 právě když jsou data rozložena 
v diagonále jdoucí od levého horního do pra­
vého dolního rohu čtvercové tabulky;

d) Ob = — 1 právě když jsou data rozlo­
žena v diagonále jdoucí od pravého horního 
k levému dolnímu rohu čtvercové tabulky;

e) Qb = 0 značí nekorelovanost, situace 
v tabulce není ovšem jednoznačná;

f) Qb je závislé na uspořádání řádků 
i sloupců a současně je závislé na rozložení 
marginálií, které určují skóre spojeného 
pořadí;

g) při změně pořadí kategorií u jedné 
z obou proměnných se změní znaménko 
u Qb; při změně pořadí u obou se hodnota 
Qb nemění;

h) koeficient se nezmění při záměně sloup­
cové a řádkové proměnné.

U čtyřpolních tabulek je Qb stejný jako 
koeficient korelace (počítaný z (0, 1)-veličin) 

«11«22 — «12^21(46) Qb = ------------------------- r—
r ^1.«2.». 1^.2

P) Skórovaci metody
Nejjednodušší přístup k pořadovým korela­
cím je skoro vat kategorie a pro daná skóre 
spočítat lineární korelační koeficient

(47)
var X . var Y

Za skórovaci postup mohl být považován 
i Spearmanův koeficient pořadové korelace. 
Skórovaci metody mohou být odvozeny 
z Danielsova vzorce (4) při vhodné volbě 
skóre.

Přirozené je volit za skóre čísla pořadí ka­
tegorií, tzn. přiřadit kategorii X( číslo i a ka­
tegorii Yj číslo j. Tak dostáváme pseudočí- 
selné proměnné, na které aplikujeme lineár­
ní koeficient r (resp. Danielsův koeficient Fy 
Tento postup je zcela legitimní, pokud neza­
pomeneme při interpretaci na naše výcho­
disko a na to, co korelujeme. K tomuto pří­

stupu existuje predikční model s PRE inter­
pretací: předpovídáme číslo kategorie pro­
měnné Y bez znalosti čísla kategorie X a poté 
se znalostí čísla kategorie X. Jako predikční 
pravidlo slouží lineární regresní funkce, která 
charakterizuje vztah čísel kategorií. Uvede­
ná metoda se aplikuje dosti často. Poskytuje 
jak symetrické, tak asymetrické interpretace 
koeficientu. Pro výpočty přípustně transfor­
mujeme skóre tak, abychom si ulehčili vý­
početní námahu, zkrátili numerické kroky 
a snížili počet chyb. Obvykle volíme skóre 
nula u nejčetnější kategorie znaku nebo 
u prostřední a pak volíme hodnoty 1,2,... 
směrem napravo a — 1, — 2,.. . směrem na­
levo.

Můžeme-li uvažovat nějaký typ rozložení 
na kontinuu podloženém kategorizací (např. 
normální standardizované rozložení N(0, 1)), 
zavádíme skóre odpovídající četnostním hod­
notám a tomuto rozložení. I když je tato 
metoda uváděna u problematiky uspořáda­
ných kategorizací, není vhodná pro měření 
ordinální statistické závislosti, neboť její vý­
sledky nejsou invariantní k monotónním 
transformacím původního kontinua. Je to 
tedy metoda zpracování kardinálních znaků.

Málo častý je případ hledání skóre tak. 
aby korelace mezi proměnnými X, Y byla 
maximální. Tato maximální hodnota se pak 
používá jako charakteristika vazby (viz [8], 
kap. 33). Pro nás tento postup vycházející 
z kanonické analýzy nemá většinou praktic­
ké použití, i když lze pro něj nalézt velmi 
dobré metodologické důvody.

Numerické příklady21

Příklad 1
Tento vztah může být v určitých kontex­
tech považován za asymetrický a v určitých 
kontextech za symetrický. Proto zde před­
vedeme výpočet obou typů měr. Víme, že 
většinu koeficientů lze spočíst z několika zá­
kladních hodnot; nejprve určíme proto po­
mocné veličiny:
P = 144(600 + 363 + 136 + 166) + 

+ 550(363 + 166) + 114(136 + 166) + 
+ 600.166 = 607 138 (aplikace 
vzorce (5))

ai) Za příklady ze sociologické praxe děkujeme H. Jeřábkovi, který vyhledal a poskytl data tab. 1, a J. Linhartovi, 
který vyhledal a poskytl data tab. 2 a 3 a velmi aktivně podněcoval autory k napsání této stati. Přívodní data byla 
z důvodů zjednodušení upravena sjednocením kategorií. Příklad 1 pochází z výzkumu dlouhodobé spotřeby obyvatel 
provedeného Výzkumným ústavem obchodu (J. Bórová, H. Jeřábek), příklady 2 a 3 pocházejí z výzkumu postojů 
obyvatel historického jádra města Tábora (J. Linhart, M. Matějů).
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Tabulka 1: V stah přijmu přednosty domácností a stupni vybavenosti domácnosti

Příjem přednosty 
domácnosti (X)

Stupeň vybavenosti domácnosti (Y)

nižší standard vyšší Celkem

do 1500 144 560 89 783
1501-2500 114 600 363 1077
2501 a víc 15 136 166 317

Celkem 273 1286 618 2177

Q = 550(114 + 15) + 
+ 89(114 + 000 + 15 + 136) + 
+ 600.15 + 363(15 + 136) = 211 748 
(aplikace vzorce (6))

Ao = 144(550 + 89) + 550.89 + 
+ 114(600 + 363) + 600.363 + 
+ 15(136 + 166) + 136.166 =495 654 
(aplikace vzorce (7))

Po = 144(114 + 15) + 114 . 15 + 
550(600 + 136) + 600 . 136 + 
+ 89(363 + 166) + 363.166 = 614 025 
(aplikace (8))

Z = |(144 . 143 + 550.549 + 89.88 + 
+ 114 . 113 + 600.599 + 363 . 362 + 
+ 15 . 14 + 136 . 135 + 166 . 165) = 

= 440 011 (aplikace (9))
A'„ = 607 138 + 211 748 -l 614 025 =

= 1 432 911 (aplikace (10))
nebo
A„ = |(21772 _ 7832 - 10772 - 3172) = 

= 1 432 911 (aplikace (12))
y„ = 607 138 + 211 748 + 495 654 = 1 314 540 

(aplikace (13))
nebo
yu = 1(21772 - 2732 - 12862 - 6188) = 

= 1 314 540 (aplikace (15))

Nakonec vždy provádíme numerickou kon­
trolu podle (16):
P + Q + Ao + Po + Z = 607 138 + 
+ 211 748 + 495 654 + 614 025 + 440 011 = 
= 2 368 576

^Ti^ — 1) = 42177.2176 = 2 368 576.
Pomocí těchto hodnot spočteme

P - Q 395 390 „ .
: ------------ ------= - --------------= 0,11

jn(n — 1) 2 368 576
(viz (24))

P - Q 395 390 _
^Y?KU ~ (1314 540.1432 911)4 ~

= 0,29 (viz (27))

ím^P — 0) _ 2.3.395 390 
n^m - 1) — 21772.2

= 0,25 (viz (28))

Hyix =
PZ-Q = 395390 0 28
Xu 1432911 ’

(viz 31))

, ; P"Q =
4(AU + 1 u) 

2 .395 390
= 1432 911 + 1314 540 = ^ (™ 39»

Pro výpočet Spearmanova koeficientu po­
třebujeme nejprve znát skóre pro jednotlivé 
kategorie obou znaků. Ty vznikají jako prů­
měrná pořadí v těchto kategoriích:

A(l) = 783 + 1 392

X^ = 2 ‘ 783 +. 1077 + 1 :-

A,(3)= 2^834^77 + 317+ 1 = 20ig

P - Q
7 P + Q

395 390
~ 818 886

607 138 - 211 748
1)07 138 + 211 748

= 0,48 (viz (19))

y(2) = 2^^±L=916,5

7(3) = 2^73 ±2128^+618+1 = 1868>5

Nyní se můžeme rozhodnout pro dva po­
stupy — buď aplikujeme vzorec (45), nebo
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Tabulka 2: Vztah vzděláni přednosty domácnosti a spokojenosti s bydlením u části vybíravého souboru z histo­
rické části místa Tábora

Stupeň vzděláni
Spokojenost s bydlením

vysoká nízká
Celkem

1 2 3 4 5

Neúplné základní 14 16 6 2 3 41
Základní 1 16 23 19 18 77
Vyučen 1 14 26 7 4 52
Nižší střední 0 2 3 9 0 14
Maturita 0 1 6 3 1 11
Vysokoškolské 1 1 0 0 3 5

Celkem 17 50 64 40 29 200

spočítáme lineární koeficient r pro takto zís­
kané skóre. Zde naznačíme aplikaci vzorce 
(45). Snadno nahlédneme, že Spearmanovo 
Ob se nehodí nikde tam, kde jsme závislí na 
ručních výpočtech, neboť postup je velice 
zdlouhavý. Výraz S(d2) spočteme podle vzor­
ce (42):
Sí^ssn^jc^-Ttj)2^

= (392 - 137)2 . 144 + (392 - 916,5)2 . 
. 550 + (392 - 1868,5)2. 89 + • ■ • + 
+ (2019 - 916,5)2 . 136 +
+ (2019 - 1868,5)2 . 166 = 

= 944 045 236.
Dále aplikujeme vzorce (43), (44), pro výpo­
čet T a U: "

t = «,.«-!) =
= -^ [783 (7832 - 1) + 1077 (10772 - 1) + 

+ 317(317 2 — 1)] = 146 762 08«

Obdobně u U = 19« 596 244.
Dosazením do (45) dostaneme Ob = 0,31.

Poslední možnost je aplikace vzorce line­
árního Pearsonova koeficientu korelace pro 
kategorie skórované pořadími, tj.

X(l)= 1, X^^ 2, X^) = 3, 
7(1) = 1, 7(2) = 2, 7(3) = 3.

Toto heuristické skoro vání ukazuje smysl 
nasazení mír)-. Pro výpočet je pohodlnější 
skoro vání

^(1) = 7(1) = - 1, Jí (2) = 7(2) = 0, 
Jí (3) = 7(3) = 1.

Numerický výsledek je ovšem stejný: r2 = 
= 0,0936, r = 0,31. '

Srovnávat hodnoty jednotlivých koefici­
entů nemá smysl, protože každý z nich je 
jinak definován, měří proto poněkud jiné 
aspekty rozložení v tabulce a má svou vlast­
ní významovou škálu.

Příklad 2

Tabulka 2 reprezentuje zajímavý případ, 
v němž se projevuje „křížení“ dvou závis­
lostí, které jdou po hlavních diagonálách. 
Diagonála přímé závislosti je však slaběji 
početně obsazena, proto koeficienty ordinál- 
ní závislosti budou především odrážet zá­
vislost nepřímou, ale budou oslabeny závis­
lostí opačného směru. (Poznamenejme, že 
přímá závislost mezi spokojeností a vzdělá­
ním je ovšem nepřímou statistickou závis­
lostí v tomto uspořádání tabulky.) Vztah po­
važujeme za asymetrický. Tabulka ukazuje, 
že zkoumaná populace 200 osob může být 
rozdělena na dvě části (pravděpodobně různě 
velké), v nichž se projevují opačné závis­
losti. (Třídění dat vyššího stupně by tuto 
hypotézu potvrdilo.) Numerické zpracování 
dává tyto výsledky:

P = 7353, Q = 4187, No = 3797, 70 = 3132, 
Z = 1431, Jí« = 14 672, Yu = 15 337;
y= 0,27; t6= 0,21; dY[x = 0,22.

Pro zajímavost uvádíme asymetrické nomi­
nální míry statistické závislosti:
TY[x = 0,10 (Wallisův koeficient proporcio­

nální predikce)
^Yix = 0,15 (Informační míra) 
(vzorce viz [14]).
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Tabulka 3: Vztah současného stavu placeni nájemného a ochoty zaplatit za lepii byt « výběrového souboru 
domácnosti z asanační oblasti města Tábora

V současné době 
platí nájemné Je ochoten platit nájemné za předpokladu lepšího bytu

-50 -100 -150 -200 -250 -300 více Celkem

do 50 10 16 15 5 1 1 o 50
51-100 2 20 18 17 4 4 5 70

101-150 1 Q 31 10 11 4 2 61
151-200 1 1 8 16 15 10 9 60
201-250 1 0 O 4 7 10 5 29
251-300 0 1 0 2 8 4 4 19
301 a více 0 0 0 0 0 0 1 1

Celkem 15 40 74 54 46 33 28 290

Přiklad 3
Oba vstupy jsou kardinální, a proto přede­
vším uvažujeme o použití lineárního kore­
lačního koeficientu r. Vztah v tabulce však 
lineárně nevypadá a v takových případech 
je lépe volit míry ordinální asociace, ob­
zvláště u tabulek větších rozměrů. Stupeň 
ordinální asociace libovolného typu bude 
charakterizován koeficientem y. Současně 
s ordinální závislostí nás však zajímá v tom­
to speciálním případě stupeň neshody, tj. 
jaká je shoda (či neshoda) mezi stavem 
a ochotou. Pro tento účel je vhodný r» nebo 
¿yix (neboť jde o asymetrický vztah). Všim­
něme si, že tento koeficient může být vzat 
za jeden z indikátorů spokojenosti šetřené 
populace s bydlením; (čím vyšší hodnota r» 
či dy/x, tím vyšší shoda stavu a ochoty a tím 
nižší potřeba měnit i za jisté oběti).

Přestože uvádíme tuto tabulku, domnívá­
me se, že pro interpretaci závislosti v ní a po 
podrobnější inferenci z ní jsou míry závis­
losti málo zajímavé, protože tento typ tabu­
lek (a podobně např. mobilitní tabulky, které 
mívají často podobnou strukturu) vyžaduje 
speciální typ analýzy (zejména studium po­
sunutí marginálních rozloženi a převodní 
mechanismy).
Numerické výpočty:
P = 22 539, Q = 6405, No = 6003, Yo = 
= 5144, Z= 1814, Xu = 34088, P„= 34947; 
y = 0,56; r» = 0,47; dy/x = 0,47, r = 0,54.

Závěr
Snažili jsme se uvést pokud možno úplný 
přehled užitečných a dnes více nebo méně

používaných měr ordinální statistické závis­
losti dvou znaků. Zatímco nominální závis­
lost byla charakterizována spojením kate­
gorií, ordinální závislost je charakterizována 
souběžností relací u dvojic v souboru.

Výběr jedné z měr je záležitostí výzkum­
ného kontextu. Každá míra odpovídá poně­
kud jinému typu problému, a tudíž její na­
sazení je možné pouze vzhledem k příslušné­
mu výzkumnému cíli.

Používání mnoha měr je nevhodné, neboť 
to snižuje komparabilitu dat různých vý­
zkumů, ztěžuje to práci v sekundární ana­
lýze apod. Doporučit konečný výběr je však 
velmi obtížné. Jemné rozdíly mezi koeficien­
ty jsou těžko postřehnutelné a závisí na citu, 
zkušenosti, někdy na tradici či módnosti, 
který koeficient je ve výzkumu použit (po­
slední dva důvody by však měly být pokud 
možno eliminovány).

Naše kritéria pro výběr jsou:
1) jednoduchá a smysluplná interpretace za­

ložená na vhodném pravděpodobnostním 
principu,

2) jednoduchý a rychlý výpočet.
Druhý aspekt je důležitý i v době, kdy máme 
k dispozici počítače. Nezřídka se stává, že 
potřebujeme dopočítat nějaké hodnoty pro 
další tabulky nebo části tabulek pro detailní 
analýzu. V naší praxi používáme většinou 
skórovacích postupů (skórování číslem kate­
gorie), a to především pro nedostupnost 
vhodných a levných programů s širším vý­
běrem měr. Tento postup je pouze náhraž­
kou v situaci, kdy nelze použit koeficienty 
adekvátnější. V žádném případě jej nedopo-
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ručujeme čtenářům; neodpovídá ani jedno­
mu z obou požadavků právě vyjádřených. 
Dále pak Goodman-Kruskalovo gama. V sy­
metrické a asymetrické interpretaci se velmi 
nadějné zdá Somersovo d. Jeho použití je 
omezeno tím, že nebývá běžnou součástí pro­
gramů na počítače. Dáváme přednost y před 
re hlavně tam, kde široká třída krajních pří­
padů dobře odpovídá pojmu ordinální zá­
vislosti. Zároveň tu přistupuje technický 
aspekt — z několika zkušeností se zdá, že 
gama má menší směrodatnou odchylku. Ke 
zkoumání reliability metodou „test-retest“ 
bychom však spíše měli používat T& než y. 
Spearmanův koeficient může být použit 
v nejrůznějších kontextech, nejlépe se však 
hodí na situace, kde jde o skutečné spojení 
dat ve smyslu shluků na kontinuu. Nepří­
jemný je jeho dost zdlouhavý výpočet.

V rukou zkušených výzkumníků, kteří 
nikdy neabsolutizují čísla a hodnoty koefi­
cientů, je i při neoptimální volbě koeficientů 
pouze malé nebezpečí, že se dopustí chyby. 
Znovu zdůrazňujeme, že hodnoty koeficientů 
jsou jen vodítkem pro interpretaci.

Uvedli jsme zde přehled, ale se stavem 
spokojeni nejsme. Domníváme se, že ordi­
nální míry a obzvláště jejich zapojení do 
dalších následných úloh byly studovány po­
měrně velmi málo. Vývoj těchto měr by měl 
být především záležitostí sociologicko-meto- 
dologických úvah, protože ordinální znaky 
jsou nejtypičtější právě pro sociologii a jí 
příbuzné vědy.

Při zpracování tabulek s ordinálními vstu­
py zjišťujeme nejen míry ordinální, ale i no­
minální závislosti, což doporučujeme i čte­
nářům. Pro tabulky s nominálními vstupy 
však ordinální míry nepočítáme (ač to zní 
neuvěřitelně, ve výzkumu lze najít příklady 
interpretací Spearmanova koeficientu pro 
čistě nominální vstupy, a to i se znaménkem).

Zároveň chceme upozornit na běžnou, ale 
velmi hrubou chybu při výpočtu koeficientů: 
při použití počítačů zahrneme též kódy pro 
reziduální kategorie, například „neodpově­
děl“, „odmítl odpovědět“, „neví“, „není si 
jist“ apod., do uspořádané stupnice. Kódy 
pro tyto hodnoty nesmí být zahrnuty do 
výpočtů, jinak dostaneme (a mnohdy, bo­
hužel dostáváme) zcela zkreslené a nesmysl­
né výsledky (které ve výzkumných zprávách 
figurují jako validní).

Ve stati jsme neuvedli ani metody inter­
valového odhadu (asymptotickou normalitu 
a její parametry), ani metody testování hy­
potéz. Domníváme se, že v sociologii na prv­
ním místě stojí obsahová stránka populač­
ních měr, i když samozřejmě testování a od­
had jsou nutnou součástí analýzy dat. 0 in- 
ferenčních problémech se čtenáři mohou po­
učit v citované literatuře, rozsah této práce 
nám neumožnil výsledky na tomto poli shr­
nout současně s definicemi koeficientů.
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Pe3ioMe
PweraK fl., PweraKOBa B.: MepM cTariicrHHecKoii 
33BHCHMOCTH PJIH OpflHHaJIbHMX HepCMCHHblX 
y napM oppnnajibHMX nepeMennbix mm mowbm 
H3MepHTb njin HOMHHaJibHyro nan oppHHajibHyio 
3aBncnMocTb. CrarbH paaOnpaer MepM opgnHajib- 
hoh 33bhchmocth. Hepenenb npnBeneHHMX Koat])- 
<])HUHeHT0B yiHTMBaeT oraacTU CHMMerpinecKoe 
h orsacTH accnMcrpiiHecKoe OTHOinenne h orqacrn 
paanue noaxo^M k naMepeHiiro opnHHajibHoîi 3a- 
bhchmoctm. Fiona npUMena eMHe b nnteparype 
flaa ochobhmx npHHU,nna ecTb cjienyiomne:

a) PRE (proportional-reduction-in-error) — 
npHiinirn, ncxoflamna na Toro, hto bosmoikhoctb 
npe^BH^eTb ofl»y nepeMOHnyK) npn noMomn ini- 
4>opManHH o BTopoii nepeMeHHoii Rana crarncrH- 
HCCKOH CBH3MO M npeflMKTHBHOCTb, T3KHM o6pa- 
30M, HBJIHCTCH HH^HHaTOpOM CT3THCTHHeCK0H 38- 
BHCMMOCTH. fljIH OIlpOflejieHHH CT8THCTHHeCK0H 
MepM aroro Tnna b TanoM cjiyqae mm ncnonbsyeM 
ypaBHenne (3), KOTopoe orBenaer accHMMerpn- 
nec-KOMy oTHOineHino. BHÔopoHiiocrbio nanpaB- 
jwhhh npe^Hnnmi mm ror^a mowcm rohth ro 
CHMMerpnaapmi MepM.

6) npiiMeseHHe oômero KoaÿÿimiicHTa Aa- 
Hirejibca KoppejiHpnH (ypaBHenne (4)), KOTopMii 
OTBe'iaer CHMMerpjniecKOMy orHonieHnio: b ooenx 
opnnHaJibHbix cnennjntKannHX oh Mower 6mtb 
HcnojibaoBan ran we accHMMerpinecKir.

BojIblHHHCTBO Mep BMCHHTMBaeiCH M3 nec- 
KOHLKnX OCHOBHMX RaHHMX; HOBTOMy BBO^HT- 
CH 3TH HOHHTHH H HpHBO^HTCH HX ajiropHT- 
mm: hhcjio cxorctb (5), hhcjio iiecxoncrB (6), 
HHCJIO paaHHX TH1IOB CBH3CH (7) — (9) II pa3HMe 
Apyrne ornoineHiiH (10)—(16).

B nepenne conepwarcfl cjiejxytoinne MepM:
A) FaMMa Pyd.Mon-KpycKa.ta (jiopMyjiM (17 — 

(19)) — npnBoaHTCH ero accHMerpnqecKire 
h CHMMerpinecKne MirrepnpeTan,iiH, PRE- 
MOflejIb M CB0HCTB3,

B) Tay KeudaAaa u ezo Moduÿuitaiptu (jiopMyjiM 
(20) —(30)) — npMBO^HM ero nan peayjibrar 
o6w,ero KoaÿjinnHeHTa flannejibca, npiiBoaiiM 
CBOHCTBa name Bcero ynorpeÔJifleMoro 1'6 n

ccM.raeMCH na jinrepaTypy na PRE-MuflejibH 
Ha BO3MOWHOCTB HCHOJIb3OBaTb 6T0 KaK ^BH 
CHMMeTJlHHCCKHX, T3K H ^-TH aCCHMMeTpH- 
necKHx oTHomennii.

B) d„!! CoMepca BO3HHKaer Ka« accHMMerpnaa- 
nn KoaýjiHiAHeHTa Tay-b n npHronno r^h 
M3MepennH accuMerpirnecKoro orHoineuMH. 
FIpHBO«HTCH ero CBoiicTBa ir ccMJiKa na PRE- 
-Monejib.

T) CuMMempu3upoBanuoe d BO3HHKaCT BMÓopoH- 
Hocrbio HanpaB.ieHHH npe;vu;unn b PRE- 
-Monejin; caenoBareJibHo, cMMMerpnsanHH ko- 
aýýnHHeHia npyran wm y ray-b Kennajuia.

/J) Koa<j)4>uyueHrn KoppeAayuu CnupMsna 9aa 
KOHmumeHyuoHHui maÓAui4 (ýopMyaM (42) — 
(45)) BO3HHKaer nyreM no«xojnmero oróopa 
chctob b BeneiiHii /JaHHejibca (jiopMyjia (4)). 
PeHeanc obmeii npHMeHBHHOH Bepcnn K03$<}>n- 
pneHTa pjih KOHTHureHpHOHHHX raójiiiu c y- 
nopHflOHeHHMMII K3TeropHHMH OTBeHaeT CH- 
Tyapmi, Korpa oppHHaJibHHH npnanaK bos- 
HHKaer na cnnoniHoro KOHTnnyyMa H Karero- 
piIH (CBH3aHHblii IIOpHpOK) OTBCHalOT Hepa3- 
JIHHHMMM Ha6jlK>peHHHM. ErO B03M0WH0 HO- 
HHMarb TaKwe KaK KoaýýirmieHT aiiHeuHou 
KoppejiHiyrn nopHpKa it ero mohiho BMBopirrb 
K3K PRE-K03(J>$HIXHeHT, B03HIÍKaK>mHÍI HpH 
JIHH6HH0H npepHKitHH paHra orho6 nepeMen- 
hoh npn uoMoipn paura BTopoii nepeMeHHoii. 
V KoaýýnpneHTa ananonniHMe CBOHCTBa, 
KaK ray-b Kenpajuia, ero óonbmoii nenocra- 
tok saiMtoHaercH b sarpypHHTenbHOCTM it 
MenaHTeabHocTH BMHHcjieHirii. npepcraBiie- 
hm «Ba BMHMCjnrrejibHMX npireMa.

E) BaAAosbie Memodu. CaMMM npocTMM óa.TJlOBMM 
MeropoM HBJHeTCH iicno;ib3OBaHHe paura Ka- 
reropnn kbk 3iiaHeiiHH npH3H3Ka. K ra- 
khm cneraM mowho b raKOM cjiynae npn- 
JIOWHTb KOppejIHpHOHHMH KOSjujlHUHeHT IlHp- 
COHa JIHH6HHOH SaBHCHMOCTH KapjIHHaJlbHMX 
npi!3HaKOB, KoropMii MOWHO HHTepnpeTHpO- 
Barb b paMKax PRE-morojih, b Koropoii mm 
npepcKaaijsacM hhcjio KareropHir opHoro npn- 
3HaKa npn noMonyr nncjia Kareropun Broporo 
npnanaKa n jiHHenHoro perpeccHBHoro ypaB- 
HOHnn. ynoMHHyrM raKwe SannoBMe Me- 
ropM ncxopninne na npepnocMJiKH oóocho- 
BaHHoii BepoHTHocTHon Mopenii, pacnpepe- 
jienne nacror h Mopeiib MaKCHMajibHoii Koppe- 
jiHirnn.

Ajih HarnapHOCTH M ayHinee noKHManne reKcra 
h ocoOerao «Jin njiaiocrpapHM ajiropimioB BKnio- 
H6HM rpn HyMepnnecKHX npnMepa, ncxopHinne 
H3 KOHTHHreHpMOHHMX TaÓjIHP COnHOflOrHHeCKHX 
HCcaenoBaHiiii.

B 3aK.lIOHeHHe MepM KOpoTKO KOMMCHTIt- 
pyiOTCH.

Summary

Řehák J. — Řeháková B.: Measures of Sta­
tistical Dependence for Ordinal Variables

In a pair of ordinal variables, either the 
nominal or the ordinal statistical dependence 
can be measured. The present paper deals 
with measures of ordinal dependence. The
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survey of introduced coefficients respects the 
symmetrical and the asymmetrical relation 
on the one hand, and various approaches to 
the measurement of ordinal dependence on 
the other. The two fundamental principles 
that have hitherto been applied in literature 
are the following:
a) The PRE (Proportional-Reduction-in-Er­

ror) principle based on the fact that the 
possibility of predicting one variable with 
the aid of information on the second va­
riable is given by statistical dependence, 
and thus predictability represents the indi­
cator of statistical dependence. Equation 
(3), corresponding to the asymmetrical 
relation, is then used for defining the 
statistical measure of this type. By rando­
mizing the direction of the prediction, a 
symmetrization of the measure can be 
achieved.

b) The application of Daniels’ general cor­
relation coefficient (equation [4]) which 
corresponds to the symmetrical relation; 
in both ordinal specifications, it can be 
applied also asymetrically. Most of the 
measures are calculated from several basic 
data; this is why these concepts have been 
introduced and their algorisms indicated: 
number of congruences (5), number of in­
congruences (6), number of various types 
of combination (7) — (9), and various fur­
ther relations (10) — (16).

The survey includes the following measures : 
A. Goodman-Kruskal’s gamma (formulas 

[17]—[19]) — its asymmetrical and sym­
metrical interpretations, PRE model and 
attributes are given.

B. Kendall’s tau and its modifications (for­
mulas [21]—[30]) — it is introduced as the 
consequence of Daniel’s general coef­
ficient; attributes of the most frequently 
used Th are mentioned. We refer to lite­
rature for the PRE model, as well as for 
the possibility of applying it both in sym­
metrical and in asymmetrical relations.

C. Somers’ dy/x arises as the asymmetrization 
of the coefficient tau-b and is suitable for 
measuring the asymmetrical relation. Its 
attributes are mentioned and reference is 
made to the PRE model.

D. Symmetrized d arises by randomizing the 
direction of prediction in the PRE model; 
it is. therefore, a symmetrization of the 
coefficient that is different from Kendall’s 
tau b.

E. Spearman’s correlation coefficient for con­
tingency tables (formula [42] —[45]) arises 
from an adequate choice of scores in Da­
niels’ application (formula [4]). The genesis 
of the general applied version of the coef­
ficient for contingency tables with ordered 
categories corresponds to the situation 
where the ordinal variable arises from the 
joint continuum and the categories (joint 
order) correspond to undistinguishable 
observation. It may also be conceived as 
the linear-correlation coefficient of order 
and derived as the PRE coefficient arising 
in the linear prediction of the order of 
one variable with the aid of the order of 
the second variable. The coefficient has 
similar attributes as Kendall’s tau-b; its 
great disadvantage consists in the diffi­
culty and lengthiness of calculations. Two 
calculation procedures are presented.

F. Scoring methods. The simplest scoring me­
thod is the application of the category 
order as the value of the variable. To such 
scores, pearson’s correlation coefficient of 
linear dependence of cardinal variables 
may be applied. This coefficient may be 
interpreted within the framework of the 
PRE model wherein we predict the 
number of the category of one variable 
with the aid of the number of the category 
of the second variable and the linear 
regressive equation. Also scoring methods 
based on the assumption of the underlying 
probability model of frequency distribution 
and the model of maximum correlation 
are mentioned.

For the sake of elucidation and a better 
comprehensibility of the text, and particularly 
for the sake of illustrating the algorisms, 
three numerical examples proceeding from 
contingency tables of sociological researches 
are presented.

In conclusion, the measures are briefly com­
mented upon.
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