Méreni statistické zdavislosti
nomindlnich znak(*

1. Uvodni peznamky

Statistickd zdvislost je jednfm z centralnich
pojmit analyzy sociologickych dat; je to
pojem velice komplexni, zahrnuje mnoho
riznych aspektt a v souvislosti 8 nfm je
tieba vyrovnat se s celou fadou statistickych
metodologickych tkola, jako jsou:

a) vztah statistické a skutecéné zavislosti;

b) zdvislost dvou a vice proménnych;

¢) zavislost dvou proménnych na celé po-
pulaci a podminéné zdvislosti na dilcich
souborech; parcidlni zavislost;

d) zobeenovan{ vysledkt méfeni zavislosti
z vybérového souboru na soubor zdkladn{ —
testovan{ hypotéz a konfidenéni intervaly;

e) odlienf riznych drovni zdvislosti: no-
minalni, ordindlnf, regresni (linearni, ne-
linedrni apod.);

f) odliSeni asymetrickych a symetrickych
zavislosti;

g) sledovan{ zdavislosti vice proménnych
po dvojicich, resp. soutasné vyhodnoceni
celé zavislosti sité — zavislostni modely;

h) volba pfesného popisu, definice, modelu
statistické zdvislosti, a tim urditého koefi-
cientu.

Tyto zdkladn{ tlohy se vyskytuji v kazdém
sociologickém vyzkumu, ve kterém se pracuje
8 pojmy statistickd zdvislost, asociace, sou-
vislost; vidy je tfeba se v uvedenych bodech
rozhodnout pro konkrétni alternativu.

V ¢ldnku se chceme zaméfit na problém
dvojice nominalnich znakd, vztah asymet-
ricky i symetricky, na modely, ze kterych
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vychdzime pfi konstrukei koeficientti a jeZ
jsou zdkladem pro interpretaci numerickych
vysledki.

Pro volbu takto zaméfeného tématu je
nékolik davodu:

1. Pfedev8im je to potfeba praxe sociolo-
gického vyzkumu (vyzkumni pracovnici ¢asto
zddajf o konzultaci v tomto sméru).

2. Chceme seznamit Ctendfe se zdklady,
na nichZ jednotlivé koeficienty stoji; tato
informace m3 poslouZit adekvatnéjsf volbé
koeficienti a sezndmit nasi sociologickou
vefejnost s technikami, které jsou provéreny
matematickostatistickou teorii i vyzkumnou
praxi a mohou byt tedy doporuéeny k obec-
nému pouziti. Znalost modelit a vychodisek
také omezf trividlni chyby, napt. srovndvani
numerickych hodnot ruznych typa koefi-
cientil, coz muze vést ke zcela absurdnim
vysledkm.

3. Chceme, aby =zakladni vzorce byly
¢tendfam snadno dostupné; v praxi je éasto
nutné spocitat néktery koeficient pro nékolik
malo tabulek — v tom pripad¢ samoziejmé
nebudeme pouzivat poéitace, ale rozhodneme
se pro ruéni vypodlty; éasto také potfebujeme
spocitat nékteré miry pro rychlou orientaci
v datech.

Rozeznavime dva typy vzorecu:

a) definttorické — vyjadfujl smysl miry;
vétSinou je mozné tyto vzorce dobfe prelozit
do béiného jazyka, nejsou viak vhodné pro
vypocet, protoze dosazovini je velice pracné
a velky pocet aritmetickych operaci vede

* Cilem této stati je prispét praxi sociologického
vyzkumu informaci o jednom z duleZitych témat
oboru metod a technik statistické analyzy dat.
Piispévek v8ak muZe byt souctasné chdipan jako
ilustrativni priloha k diskusi o méfeni. Méfime zde
statistickou zavislost v dvourozmérnych kontin-
gen¢nich tabulkach — empirickym systémem jsou
tedy kontingenéni tabulky se dvéma vstupy. Tuto
z4avislost méfime numericky — abstraktnim systé-
mem je ¢ast redlné piimky. Abychom v$ak mohli
mérit, musime presné specifikovat, co rozumime
statistickou zavislostf. musime vytvorit model, jehoZ
vysledkem je vypodetni formule, ktera je pravid-
lem, podle néhoZ (dosazenim) provadime zobrazeni
mezi objekty (tabulkami) a méfic{ stupnici{ (Sast{
redlné primky). Vypodéetn{ formule je zde zobraze-
nim z mnoZiny kontingenénich tabulek na interval
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<0,1>. Tim dostavame méfeni, kKteré neni speci-
ficky sociologické. Sociologickym meéfenim se stane
tehdy, kdyZ tento model pouZijeme jako mezistupent
prce zjidtovani vztahu (méfeni zavislosti znaku)
proménnych pro uré¢ity dany soubor. V souvislosti
s problematikou méren{ chceme upozornit na za-
mérnost ndzvu ,,Statisticka zavislost znaku“. Slozi-
tost problematiky sociologického méteni je totiZ
dale komplikovéna tim. Ze pro urd¢itou vlastnost
muzeme kKonstruovat vice znakll a pro razné znaky
téZe vlastnosti dostaneme jiné hodnoty miry statis-
tické zavislosti. I z toho je tedy vid&t sloZitost
vztahu ..vlastnost — znak“ a nutnost gnozeologicko-
metodologické diskuse problému. Soucdasné jsou
patrny i meze aplikace statistickych mér pro od-
halovani skuteénych vztahu.



obvykle ke zvySeni numerickyeh chyb. De-
finitoricky vzorec, ktery odrazi obsah pojmu,
obsahuje zplsob interpretace vysledki, je
pfekladem raciondlnich zikladnich poza-
davki na miru &i zprecizovanym vyjddfenim
vychozi intuice;

b) vypoltetnt — jsou vzorce formdlné zcela
ekvivalentnf definitorickym, neni z nich
oviem vidy vidét smysl a vyznam (i kdyz
v nékterych piipadech mohou ukédzat dalsf
vlastnosti a moZnosti dalsich interpretaci
miry); jejich vyznam spoéivd v tom, Ze
zkracuji vypocetnf ¢as a ndmahu a téz
minimalizuj{ numerické chyby (obsahuji vét-
finou mendi podet operaci déleni i operacf
vubec). Vypocetni vzorec tedy obsahuje
optimélni algoritmus ruénfho vypodtu.

V této prehledové stati ndm jde o problém,
ktery hraje roli v metoddch a technikdch
vyzkumu, ve statistické analyze dat. Po-
jedndame o statistické zdvislosti, tj. o empi-
rickych jevech, vztazich, o tom, jaké relace
lze nalézt mezi daty. Jelikof ndé technicko-
matematicky kol je dosti rozsdhly, nemiufeme
se vénovat witahu pFfilinnostt a statistické
zdvislosti. Checeme tu v8ak alespon upozornit
na to, Ze zaménovdni statistické zdvislosti
se skutetnouw a redlnou kauzdlnt zdvislost
je chybné a Ze je mejhrubsim projevem empi-
rismu. (Tento problém by jisté zasluhoval
samostatnou stat.) Koeficienty statistické
zdvislosti muZeme poutfvat jen v rdmci teore-
tickyjch vztahovych modelt nebo pFi vyhleddvini
a formulacich teoretickych hypotéz — v obou
pFipadech je to pomocny apardt.

Jde tedy o problém statisticky a zdvislost
(resp. nezévislost) bude v celém daldim
textu chdpdna v tomto smyslu.

Informace o statistickém vztahu je uloZena
ve dvourozmérném rozloZeni Cetnosti zkou-
manych proménnych a konstrukce jakého-
koli koeficientu znamend redukci informace
[(r-—1) (8 — 1) Gdaji pievidime na jeden
udaj]. Aby tato redukce byla déelnd, aby
méla smysl a byla pro praktické aplikace
prelotitelnd, mus{ odpovidat na%im pozZa-
davkiim a must byt zalolema na modelu,

ktery interpretaci a pieloZitelnost redukované
informace do jednoho koeficientu umoziiuje.
V ¢lénku uvddime miry, které takovy ro-
zumny model maji; u klasickych mér (vznik-
Iych normalizaci chi-kvadritu) tento model
zcela chybi, a i kdyz samy spliujf poZzadavky
na méfeni statistické zavislosti, uvedené
v druhé ddsti, absence modelu znameni
z hlediska moderntho matematickostatistic-
kého naziréni absenci zdkladniho poZadavku,
a proto tyto miry nemohou byt doporudeny.

Rozhodné vsak nelze pieceniovat koefi-
cienty zde uvddéné; informace kondenzo-
vanéd a redukovanid v koeficientech je vy-
hodnd pro analytickou prici s velkym
podtem statistickych vztahu. Pii  hlubsf
analyze se viak neobejdeme bez studia a zhod-
nocent celé struktury kontingenéni tabulky
(dvojrozmérného rozloZeni Getnosti), a to
pi{mo analyzou relativnich éetnosti, riiznym
seskupovdanim kategorii (Gpravami pavod-
nfho znaku) nebo pomoci tzv. znaménkového
schématu, které pravé v podobnych situacich
je vhodnym metodologickym aparitem.

Koeficienty maji tedy svou roli v uréitém
typu analyzy dat. Z modelu plynou moZnosti
i meze koeficienti. Jeho absence mize vést
k libovolnosti nasazovani a interpretace.

Pii analyze dat musime ovSem odlidit dva
typy tloh, které nds mohou zajimat:

a) odhalenf existence zdvislosti, jeji signi-
fikantnf prokadzdni — tuto wlohu feSime
testovanfm hypotéz (statistickych);

b) méfeni sily zavislosti.

Obé ulohy nelze smélovat, jejich role
v postupu pozninf zaloZeném na analyze
dat je ruznd; nidm jde o problém druhy.

V téchto tuvodnich pozndmkdch jesté
chceme upozonit na to, Ze formdlné fredfme
ulohu méfenir sfly zavislosti stejné jako 1lo-
hu heterogenity (nepodobnosti) souboru.l.2
Koeficienty zde uvedené lze tedy pouiit také
v komparacnich vyzkumech jako miry po-
dobnosti ¢i rozdilnosti populaci (soubort dat).

! Termin homogenni.
statistice dva vyznamy:
a) Vztahuje se k podobnosti, resp. rozdfinosti sou-
bori dat — jde o podobnost statistickych rozloZen{
jednoho znaku v raznych populacich, resp. ob-
lastech; v tomto vyznamu je termin pouZit zde.
Homogenn{ je ve statistice pouiito ve vyznamu
..smeésitelny“ s jinymi populacemi, aniZ by se vy-
sledné rozioZenf relativnich ¢etnostf, resp. pravdé-
podobnosti, zménilo. Termin vychaz{ z homogen-
nosti (stejnorodosti) skupin dat.

b) Vztahuje se k podobnosti iidaji v jedné skupiné
dat — jde o homogenitu souboru dat, tj. podobnost

resp. heterogenn{ ma ve

jedinct v souboru vzhledem k uréitému danému
znaku: v tomto smyslu termin v ¢lanku nebudeme
pouzfvat a nahradime jej jinym terminem .ne-
urditost*. ktery odpovidia heterogenité v souboru.

? gkvivalence tlohy nezavislosti (resp. zavislosti}
a homogenity (resp. heterogenity) soubori je vidét
z toho, 2e uréeni dat do jednotlivych soubori si
muZeme pledstavit jako realizaci uré¢itého znaku,
jehoZ hodnoty jsou nazvy souborti. Homogenita je
pak totéz jako prohliseni, Ze zkoumany znak je na
takto zavedeném znaku nezavisly, tj. rozlofeni hod-
not znaku je ve viech podsouborech stejné (jsou
stejna podminéna rozloZenf).

ank



2. Méfeni zavislosti asymetrického typu —
prineipy

Predpokléadejme, zZe u dvou proménnych
(resp. znaka) X, Y mlZeme urdit, kters
z nich je nezivisle (napt. X) a kterd zavisle
proménna (napf. Y), tzn., Ze miZeme pii-
jmout zivislostni model (schéma)

X>Y

(X ovlivitluje Y, X dZasové pledchazi Y,
X je nezdvisle a Y zavisle proménnd atp.).

Ukolem méfenf statistické zavislosti je
pfedeviim odvodit néjaké smysluplné miry,
které by charakterizovaly tésnost statistic-
kého vztahu obou proménnych.

Intuitivni pozadavky na tyto miry mohou
byt vysloveny obecné jedté diive, neZz za-
vedeme piesnou definici statistické zdvislosti
pouze s intuitivnim chdpinim tohoto terminu.

Obecné pozadavky na miru statistické
zavislosti o

a) 0 < a < 1 (pozadavek normalizace mé-
Fiel stupnice, ktery je motivovan zvykem
a tim, Ze se nam s takovou stupnici dobte
pracuje);

b) « = 0, nastane pravé kdyz obé proménné
{znaky), které uvazujeme, jsou statisticky ne-
2dvislé;

o = 1 nastane pravé kdyz obé proménné
jsou jednoznadné vazény, tj. jsou funkéné zd-
vislé.3 (Tyto dva poZadavky vymezuji krajnt
hodnoty a uréuji orientaci stupnice.)

¢) « = 0, nastava nepatrny odklon od ne-
zévislosti; ¢ == 1, nastava nepatrny odklon od
zévislosti (upfesnéni vyznamu krajnich hod-
not);

d) « je invariantni k uspofddéni sloupcd
a fadkd tabulky, [poZadavek uréuje nomi-
ndlni droveii — u nomindlnich znaka je
usporadanf hodnot (kategorif) zcela libo-
volné, proto mira souvislosti musi byt stejnd,
at uZ volime usporadani jakékolil;

e) ¢im vétsi je o, tim vétsi je zavislost —
u tohoto intuitivniho pozadavku je viak
tfeba specifikovat jednoznaéné jeho vyznam
tim, Ze uréime konkrétni model.

Statistickd data z uré¢itého souboru uspo-
Fidand v tabulee, tj. dvojrozmérné sdruZené
statistické rozloZeni &etnosti u hodnot obou
znak®, marginilni rozlozeni kaZdého znaku
zvldst a podminénd rozloZeni ndm prinaSeji
jednak informaci o kazdé proménné zvlast,
jednak o vztahu obou proménnyech v daném
souboru dat. Princip, na kterém je vétsina
zde uvedenych mér zaloZena. lze verbdlné
popsat takto: Predpoklidame, Ze plati model
X — Y. Proménnd Y méa dané statistické
rozloZen{ ¢etnosti pro zkoumany soubor;
toto rozloZeni je bud vice, nebo méné ne-
uréité v tom smyslu, Ze nim pFindsi méné
nebo vice informace o nahodné zvoleném
jedinci — jestliZe jsou vSichni jedinci v jedné
kategorii znaku Y, pak muZeme samoziejmé
u kazdého z nich jednoznaéné uréit. do které
kategorie patfi, aniz bychom to zkoumali
sloZitymi metodami; jsou-li naproti tomu
jednotky rozmistény stejnomérné v katego-
rifch, pak u ndhodné zvolené jednotky bude
nase predikce sprivné hodnoty riskantai
(v pravdépodobnostnim smyslu). Pro kazdé
rozloZeni ¢etnosti znaku Y mame tedy jisty
stupenn neurcitosti. Z hlediska znaku X se
dany soubor dat rozpadi na ¢&dsti (sub-
populace, diléi soubory, oblasti, strata apod.).
V kazdé této ¢asti mizeme zjistit podminéné
rozlozeni &letnosti znaku Y. To znamend,
Zze nalezneme relativni éetnosti, jimiZz jsou
hodnoty znaku Y zastoupeny v jednotlivych
dilé¢ich souborech. Ve vétsiné pripada se
budou tato podminéni rozlozeni lisit; budou
se tedy lisit i predikece (uréovini hodnot)
a neurditost predikei hodnot Y u nihodné
zvolenych jednotek vybranych z jednotli-
vych diléich populaci. Uréime-li jakékoli
predikéni pravidlo vychdzejici z rozloZeni
¢etnost{, bude jisté lépe vychazet z dil¢iho
podminéného rozloZeni Cetnostf, které zna-
mend upfesnéni informace o jednotce. Bu-
deme tedy olekdvat, Ze specifikace X ndm
umozni lépe ,,uhodnout’ Y, tj., ze¢ X piinasf
néjakou informaci (empirickou) o Y, Ze zna-
lost X redukuje neurcitost Y.

Jestlize redukce neuréitosti v datech je
velkd, pak zdvislost X — Y je silnd (t8sné),
jestlize je redukece zanedbatelni, pak ne-
milzeme o zivislosti mluvit.

3 N&kdy se tento poZadavek formuluje tak, Ze
koeficient nabyva hodnoty 1 pravé tehdy, kdyz
¢etnostni (resp. pravdépodobnostnf) rozlozen{ obou
proménnych je singuldrnf. V sociologické analyze
se zda byt rozumnéjs{ poZzadavek uvedeny v textu;
znamena, Ze pro kaZdou hodnotu nezivisle pro-
ménné muZeme pro dany soubor dat jednoznadné
urlit hodnotu z4vislé proménné. Podrobné&jsf dis-
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kuse téchio dvou pHfstupi by pfipadala v tvahu
v pripadech symetrického vztahu. Pojem funken{
zavislosti je vzat z matematiky a je chapan jako
jednoznac¢né zobrazeni z mnoZiny hodnot X do
mnoZiny hodnot Y, zprostiedkované kontingenén{
tabulkou; takto chapana funkd¢ni zavislost je v na-
dem piipadé tedy krajnim pripadem statistické
zavislosti.



Kuategorie znaku X

Ukol* odvozeni miry tedy znf:
~— nalézt néjakou miru neuréitosti,

— vyjadiit matematicky redukei neurcitosti
plynouci ze znalosti hodnoty, X a polozit ji
do relace k puvodni neuréitosti pro-
ménné Y.

Pied upfesnénim modelt zavedme jesté
znaceni, které je obvyklé ve statistickych
priru¢kach a které bude jednotné pouZivano
i v tomto textu (viz tab. 1).

Tabulka 1.
Kategorie znaku Y

| R | Y ‘ . |
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i | |
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|

njy jo pocot statistickych jednotek v souboru,
ktoré maji souc¢asné hodnotu i-té kategorie znaku X
a j-té kategorie znaku Y:

ni. je radkovy soucet -— pocet jednotek, které
maji hodnotu i-té kategorie znaku X

1 jo sloupcovy soucet —— poéet jednotek, kteréd
maji hodnotu j-té kategorie znaku Y;

n je celkovy pocet jednotek uvazovaného souboru
vstupujicich do uvedené kontingenéni tabulky.

Hodnoty nj, uréuji marginalni rozlozoni znaku X,
hodnoty n j urcuji margindlni rozloZeni znaku Y.

Pismoeny fy, fi, fj budeme znacit relativni cet-
nosti z coelého souboru’ v téze tabulee, tzn., Ze to
i nij nj. ngj ., - )
jsou postupné n . n Th Soutet hodnot fj; je
Jednicka.

Nakonec jeSté musime vyslovit definici
statistické nezdvislosti. Ta je zcela jedno-
znacnd, zatimeco pojem stupné zavislosti
dvou proménnych je specifikovan u kazdého
modelu trochu jinak, jak uvidime pozdéji.

¢ Ctenar, ktery je obeznidmen s Kkorelaénim po-
maérem, jisté okamzité postiehl analogii — korelaénf
pomér je zaloZen na presné stejném principu. Roz-
ptyleni (neurcitost) dat je zde v8ak charakterizo-
vano souétem ¢tverci hodnot od pruméru — to
oviem je mozné jen u kardinalnich znak(. Re-
dukce neurcitosti je provedena v dil¢fch souborech
a vysledna formule je podilem této redukce a pu-
vodnf hodnoty souétu ¢tverci.

Znaky X a Y jsou statisticky vzdjemné
nezavislé, jestlize plati pro vechny relativnf
Cetnosti v tabulce vztah:

fiy="fi.fy

(tzn., ze vyskyty vsech dvojic hodnot X a Y
jsou statisticky nezdvislé jevy).

Pro absolutni ¢etnosti lze tento vztah vy-
jadiit tak, ze tzv. ocekivané ¢etnosti jsou
rovny skuteénym zjisténym cetnostem:

ng, nj

jj =
] n

Podrobnéjsi diskuse tohoto pojmu a motivaci
definice nalezne étenat v kterékoli uéebnici
poc¢tu pravdépodobnosti.

Lze k ni prejit z definice nezavislosti jedné
proménné na druhé: Y je nezavisla na X,
jestlize rozlozeni Cetnosti Y ve vsech dil¢ich
podsouborech uréenych hodnotami X jsou
stejnd, tj. jestlize rozlozeni Y postupné
podminéna jednotlivimi hodnotami X jsou
stejnd — a tedy stejnd jako nepodminéné
rozlozeni Y (specifikace podle hodnoty X
nemeéni statistickou informaci o Y, uloZzenou
v rozloZzeni Cetnosti).

Oznaé¢ime-li (f1/y, fofi, - .., fs/i) podminéné
relativni ¢etnosti Y v subpopulaci, kterd
odpovida i-té kategorii znaku X, pak v pfi-
padé nezavislosti Y na X jsou vsechna tato
rozlozeni stejnd mezi sebou a téz stejna jako
hodnoty (f1., f2., .... fs). Poznamenejme,
ze fii = ny/ny. a ze ¥ f;; = 1 pro viechna
=1 Ly By s TS J

K definici vzdjemné nezavislosti piejdeme
odtud velice snadno jednoduchymi algebraic-
kymi tpravami a konstatovanim, ze ,,)Y je
statisticky nezdvislé na X < X je statisticky
nezavislé na Y. Tato véta Fika, ze statisticka
nezavislost je symelrickd relace na mnofiné
znaki (proménnych). U asymetrického pii-
padu vychdazime z nezavislosti Y na X (tj.
jeden krajni pifpad) a pojem statistické zd-
vislosti budeme specifikovat tFfemi riznymi
moznostmi vyjadieni neurcitosti (t¥i modely,
tri vychodiska), a tedy tii ruzné miry. Vy-

5 Cisla fij povazujeme za relativni éetnosti celého
souboru: muzeme je také povazZovat za pravdé-
podobnosti vyskytu pro neomezené populace; v tom
pripadé vypocet koeficienti provadime ze vzoreu
obsahuijicich fij (nikoliv absolutni ¢etnosti) nebo pfi
dosazeni vybérovych absolutnich ¢etnosti nij dosta-
vame vybérové hodnoty koeficientu jako konzistent-
ni odhady koeficientiit populaé¢nich.
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jadfeni redukece neuréitosti je u v8ech téchto
piipadi obdobné.

3. Miry asymetrické statistické zavislosti
A. GQuttmanitv koeficient prediktability

Koeficient vychdzi z nésledujictho modelu:
Méme-li néjaké statistické rozloZzeni®

£1, 65, £ T =1

a vezmeme-li jednu néhodné zvolenou sta-
tistickou jednotku, zvolime toto predikéni
pravidlo pro neznidmou (pro nds) hodnotu
znaku jednotky: pfifadime této jednotce mo-
ddlni kategorii (tj. kategorii nejvice Getnou;
jestliZe mame vice moddlnich kategorii, vo-
lime z nich ndhodné).

Z modélni predikce plyne jednoducha
mira neurcitosti: pravdépodobnost, Ze uréime
kategorii respondenta chybné. (Cim mensi
je tato pravdépodobnost, tim mendi je ne-
uréitost v datech a tim vét$i Sance na spriv-
nou predikei; pfistup je tedy az potud jisté
rozumny.)

Pii znalosti informace o X nebudeme
uréovat Y hife. V krajnim pfipadé se ndm
dokonce miize stat, Ze budeme uréovat
hodnotu Y zcela jednoznaéné pomoecf X
a to bude situace, kdy v jednotlivych dfl¢ich
souborech (podle X) ui nemdme Zédnou
neurditost, tj. predikujeme zcela bez chyb.

Napiiklad u souboru o 100 lidech vime, Ze 70 osob
sleduje sportovni poiad v televizi a 30 nesleduje.
Rozdélime-li soubor podle pohlavi, muZeme zjistit,
%e nastane tato moZnd situace: ze 70 sledovanyvch
muzu vsichni sleduji pofad, zo 30 Zen Zidnd pofad
nesleduje. Z téchto dat (z této informace) a z in-
formace, Ze osoba je muz, plyne jednozna¢ng
zavér o hodnotd znaku sledovéni sportovniho
poradu.

Oznadime-li f  éetnost modalni kategorie
v margindlnim rozloZeni znaku Y, pak chyba
modalni predikce mé pravdépodobnost:

P (chyba predikce hodnoty znaku Y) =1 —f i

(Chyby se dopustime vidy, kdyZ prvek sou-
boru nepatii do modéalni kategorie.)

Jestlize obdobné oznad¢ime (fiy, = max fy))
a fmj je nejvétdi (moddlni) éetnost pro pod-
minéné rozloZeni znaku Y v j-té kategorii
znaku X, dostavame postupné:
P (chybné urdeni Y za predpokladu, Ze jed-
notka patfi do i-té kategorie znaku X) =
=1—fmuproi=12,...,r

Podle vzorce tplné pravdépodobnosti pak
P (chybné uréeni hodnoty Y pfi znalosti

kategorie znaku X) =1— Y fim
i
a redukee chyby je tedy:
(1—fm)— (1 — X fim) = ¥ fim—fm
Muzeme tedy zavést koeficient moddln{

predikce jako podil redukované a pavodni
neurditosti:

Zfim“‘f.m
1) Ayix = Tt
@) _ XMm—nm

n—nm

N.m, Njm Jsou postupné maxima marginalniho roz-
lozoni a Fadkovych rozloZeni absolutnich etnosti,
obdobné jako u relativnich éetnosti.

Vlastnosti koeficientu:

1. Koeficient nemé véeny smysl, je-li za-
stoupena pouze jedna kategorie znaku X;
jeho hodnota je 0; v interpretaci vSak nelze
chédpat tuto hodnotu jako nezdvislost, protoze
X neni variabilni, jeji hodnota tudiz nemuze
piispét k predikei hodnoty Y.

2. Koeficient neni definovin, jsou-li véechny
tdaje ze souboru dat seskupeny v jednom
sloupei — tj. nemame Zidnou chybu v uréo-
vini hodnoty Y z marginidlniho rozloZeni,
X proto nemuze uz piinést Zidné dalsi
zlepSeni predikee.

3. Koeficient ma hodnoty mezi nulou a jed-

ni¢kou véetné, pfitom
a) Ay;x = 0, pravé kdyZz znalost hodnoty X
nepfindsi Zddnou informaci pro prédikei Y;
viechna Fidkovd maxima jsou ve stejném
sloupci jako margindlni maximum; pod-
minéna rozloZeni v Fadefch maji stejné
modalni kategorie; (existuje j, tak, Ze
fijo = fim pro vsechna i).
b) Ay,x = 1 nastava, privé kdyz znalost hod-
noty X umoziuje jednoznatnou predikei
hodnoty Y, tzn., Ze v kazdém fidku tabulky
je pravé jedno nenulové pole;

4. Koeficient se neméni, zménime-li poradf
Ffadka nebo sloupcu: je invariantni k per-
mutaci hodnot obou proménnych. To od-
povida vlastnostem zivislosti nomindlnich
znaki.

Vlastnost 3a) nezarucuje ekvivalenci nu-
lové hodnoty a piipadu nezavislosti a to
znamend, Ze z nulové hodnoty koeficientu ne-

6 Znac¢en{ f* je pouZito proto, aby nedoSlo ke
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miZeme usuzovat mna nezdvislost obou pro-
ménnych; jelikoz takovd ekvivalence je pro
nas dilezitd, koeficient nenf piili§ pouzivin.
(Stejny nedostatek maji nékteré tradicni
miry.) Dal$im nedostatkem je, Ze v pfipadé
zévislosti je citlivy pouze na maxima, a ne
na celkovou strukturu tabulky.

Vyhody koeficientu:

a) Vzhledem k snadno pochopitelnému mo-
delu a vlastnostem muZeme bez potiZi urdit,
zda se nam jeho pouziti hodi, nebo ne.

b) Snadn4d spocitatelnost; algoritmus spoéiva
v zatrieni fddkovych maxim, jejich souétu
a jednom tkolu déleni.

¢) Jsou zndmy rizné testy hypotéz pro tento
koeficient.

Pro obecnou aplikaci v sociologickych
vyzkumech jej nedoporucujeme. Uvddime
jej zde jednak proto, Ze jeho model je jed-
noduchy a snadno pochopitelny a muze tedy
slouzit jako dvod do problému pro ne-
matematiky, a hlavné proto, Ze jej velice
dasto poufivime pro rychlé ruini vypolty,
které slouti k proni orientaci v datech.

Obecend formule pro tento asymetricky
koeficient:

z marginalniho ci Y pit znalosti
rozloZeni kat. X
P (chyba pii predikei Y z margindlniho rozlozoni)
(3)
Tato formule, navriend Guttmanem, byla
specifikovana tim, Ze byl pPesné navrien
zpusob predikece pro ndhodné zvolenou
statistickou jednotku. Z piekladu této for-
mule lze heuristicky rychle odvodit smyslu-
plnost miry: je to relativni ibytek pravdeé-
podobnosti chyby predikce pfi znalosti hod-
noty jiné proménné; je to mira informac¢niho
piinosu jedné proménné pro predikei pro-
ménné druhé.

(chybn pit predike: Y) (chybu pri predik»)
P — P

B. Wallisttv kocficient proporciondlnt predikce

Wallisv koeficient predikee je zaloZen na
stejném obeenédm modelu, vyjadieném ve
vzorei (3), pouze zputsob predikee je jiny:
zname-li rozloZen{ ¢Cetnosti v kategoriich
znaku, pak predikujeme hodnotu znaku po-
moci ndhodného mechanismu (napt. tabulky
nihodnych ¢isel) tak, Ze pfifazujeme vybrané
Jednotce hodnoty znaku s pravdépodobnostmi
dmérnymi zastoupent jednotlivych hodnot v po-
pulaci; tzn., Ze realizujeme rozlozent pravdé-

podobnosti (nebo Cetnosti) a vysledek pfi-
fazujeme k dané jednotce. Tento postup
opét uplatfiujeme pro Y bud bez znalosti,
nebo se znalosti X, spocitame prislusné
pravdépodobnosti chyb predikce a po dosa-
zeni do obecného vzorce dostavame koficient:

£ 2
TY/X e S—

1—2 f?
1
D R (f3; — f1.f5)2
T T
nj, )
(©) nyy. o — 2n?
n?— ) n’

Vlastnosti koeficientu:

(4)

(%)

1. V piipadé, Ze data jsou seskupena do
jednoho Fadku, nemd véeny smys! koeficient
potitat, nebot X nems Ziadnou variabilitu
a nemuZe tedy piindSet Zidnou informaci.

2. ty,;x neni definovéan pro pfipad, Ze se

véechna data seskupi do jednoho sloupce
tabulky (v takovém pfipadé nemé smysl
o zavislosti mluvit).

3. 7y/x nabyvi hodnot mezi nulou a jed-
ni¢kou véetné; ¢im vyssi je hodnota koefi-
cientu, tim vy$8i je prediktabilita Y z X,
a tedy tim vy33i je i statistickd zdvislost Y
na X; pfitom
a) ty;x = 0, pravé kdyZ X a Y jsou statisticky
nezdvislé, tzn., ze fy; = fy. {j pro viechna
pole tabulky;

b) ty;x = 1. pravé kdyZz znalost hodnoty X
jednoznaéné umosiiuje uréeni hodnoty znaku Y.

4. Koeficient se nezméni permutaci fadki
nebo sloupcl tabulky — to odpovidd praeci
8 nomindlnimi znaky a obecnému typu sta-
tistické zavislosti.

K bodu 2. lze jesté dodat: koeficient nems
smysl, je-li jeden fidek nulovy. V praxi
postupujeme tak, Ze tento rddek z tabulky
vynechivame a redukujeme tabulku jen
na ty radky, které obsahuji nékteré tdaje —
pfi analyze je ovSem tfeba vzit takovou
redukei hodnot znaku v tivahu. PH zdvislost-
nich dvahdch pracujeme ¢ netplnymi znaky
a nade informace o zdvislosti tedy neni do-
konala.

Z uvadénych vzorel pouzivame pro vy-
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poity vétdinou vzorce (6), vychdzejictho
z absolutnich é&etnostf.?

Vlastnost 3a) je velice dilezitd oproti
obdobné vlastnosti koeficientu Ay;x, protoze
zde méme ekvivalenci nabyvéani nuly a sta-
tistické nezavislosti, tj., je tu splnéna pod-
minka b), kterou jsme kladli na obecné
miry. Tim je také ddna preference tohoto
koeficientu vzhledemn ke koeficientu Gutt-
manovu. Vypoéty vedouci k tomuto koefi-
cientu jsou v3ak zdlouhavéjsi, a proto se
tento koeficient nehodi pro rychlou analyzu
& pro orientaci v datech v pfipadé ruénich
vypottl. PPi pouziti poditate mu viak
davame ptrednost.

C. Informaéni mira asymetrické zdvislosti

Tato mira je zaloZena nu modelu teorie
informace. V predchozich ptipadech jsme
dosazovali do obecného vzorce Guttmanova,
v némz se vyskytovaly pravdépodobnosti
chyb. Nyni vezmeme zcela analogicky obecny
vzorec, v némi misto pravdépodobnosti
chyby predikce budeme uvaZovat obecnou
miru neuréitosti (variability) statistického
rozlozeni. Zobecnime-li takto zikladni vzorec,
dostavame:

neuréitost v} _ [neuréitost v rozloZeni Y
(7) rozloZeni Y pri znalosti X

(neuréitost v rozlozeni Y)

Misto redukce pravdépodobnosti chyby zde
mame relativni abytek obecné miry neuréi-
tosti v distribuci proménné Y pii znalosti
hodnoty X, a to v poméru k piivodni hodnoté
neuréitosti.

Teorie informace zavidi jako miru ne-
uréitosti tzv. entropii® a informaci jako miru
redukce entropie.

Po dosazeni téchto pojmi do obecného
vzorce dostdavime (viz Nikl, Perez (8]):

H(Y) — H(Y/X)

Cyx = Y 8)
X, Y)
TOH(Y) ©)

_ 1 Lfilogfi—) ) fiylogfy
— 2 £ logf 4

=1— 2ny, logng, — 2 ¥ nyy log nyy
nlogn— Z n,ylogn

(10)

(11)

Vlastnosti tohoto koeficientu jsou stejné
jako vlastnosti koeficientu ty;x (viz vlast-
nosti Wallisova koeficientu). Proto je jeho
aplikace obdobna.

Navic mé tento koeficient — oproti pied-
chizejicimu — jednu velkou vyhodu — lze
jej velice snadno spotitat, mame-li k dispozici
tabulky hodnot k log k& (pro ptirozend &isla k)
nebo — p log p (pro hodnoty p mezi nulou
a jedmickou). Jsou-li tabulky takovych
hodnot dostupné,® pak je vypolet velice
rychly — znamend pouze séitani a od&itani
tabulkovych hodnot a jedno déleni.

4. Symetriekd statisticka zavislost

V mnoha piipadech nemuzeme uréit kanzalni
nebo ¢asovou posloupnost proménnych, tj.
roli nezavisle a zdavisle proménné: v tom
piipadé nemd asymetrické méfeni statistické
zvislosti Zddny smysl a je navic chybné
a zavadéjici. Proto musime volit jiny ptistup
k problému a jiné vychodisko modelu.
Rozumny model symetrizace, ktery zde
popisujeme, je v matematické statistice
obecné povaZovan za plijatelny a je také
tasto pouzivan. Pojem symetrické zdvislosti
pouzivime tam, kde nevime, kterd z obou
zkoumanych vlastnosti piedchizi druhé, nase
poznani neumoziuje uréit mezi vlastnostmi
vztah nezivislé a zdvislé proménné, iidna
z nich nemuze slouZzit jako explanaéni faktor
pro druhou apod.; zatimeo mezi vékem
a postojovymi otdzkami je smér mozného
statistického vztahu jednoznaény, u dvou
postojovych otdzek to jiz tak snadné neni.
Symetri¢nost navic muZe znamenat také
vzdjemné soucasné ovliviiovini obou vlast-
nosti. Model je zaloZzen na této uvaze:
neznsme smér asymetrie, proto uplatnime
predikci obéma sméry a vysledky véaZime

7 Druhy tvar vzorce ukazuje souvislost s tzv. chi-
-kvadratovymi nebo klasickymi mérami, ve kterych
vystupuji stejné ¢leny: ¢étverce rozdfla mezi zjisté-
nymi a odekdvanymi getnostmi v polich.
(fiy — fi. f.3)2: tyto ¢leny jsou v souétu nasobeny va-
hami (1 — Ef'—'.j) /fi.; tim vznika urc¢ity zpusob nor-
malizace zakladnich ¢lenu. fi. ve jmenovateli jsou
vahy, které zrovnopravnuji radky s nizi{m zastou-
penim se faddkami ¢etné&jiimi.

8 S teorif informace 2zde seznamavat nemuZeme,
¢tenate odkazujeme napi. na pracl Jasin (5). Uva-
dime zde jen zakladn{ pojmy a znaceni: H(X) —
entropie znaku X, H(Y) — entropie znaku Y,
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H(X, Y) ~— entropie dvourozmérného rozlozen{
vzniklého kombinaci obou znaktt X, Y. Informace
X o Y (stejna jako Y o X) je 1 (X. Y)=H(X)+
< H(Y) —H((X, Y)=H((Y) — H(Y/X) = .neurci-
tost v Y* — ,neurditost v Y pri znalosti X“. Dale
definujeme H(Y) = — Zf log f.j atd.

9 Tabulky jsou publikovany v knize Kullback ([6],
jejiz rusky preklad z roku 1967 je u nas dostupny.
Pri vypodétech nerozhoduje zaklad logaritmu, proto-
ze sc faktor prevodu pfi déleni zkrati. PouZivame-li
v3ak mezivysledky pro jiné metody (napf. testovanf{
hypotéz), pracujeme s pfirozenym logaritmem.



stejnou vahou (rovnou jedné poloving), tj.
vezmeme ndhodné jeden prvek, rozhodneme
se 8 pravdépodobnosti 1/2, ktery smér pre-
dikce budeme uvaZovat, a pro ten provedeme
predikei.

Misto pravdépodobnosti chy b predikece zde
dostaneme oc¢ekdvané hodnoty pravdépodob-
nosti prislusny k obéma sméram.

P (chybna predikce jedné proménné bez
znalosti druhé) = 1 — 1/2 [P (sprdvné
pro X) + P (sprivné pro Y)]

Obdobné plati pro predikei jedné promém
pii znalosti proménné druhé. Tyto hodnoty
dosadime do obecného Guttmanova sché-
matu.

A. Symetrizovany Guttmaniv koeficient predikce

Vychdzime z modelu modélni predikee a do-
stdvame koeficient, ktery charakterizuje miru
symetrické statistické zavislosti:

fm. ]
1_ (fm+fm)“ o 12)

fim znaéi relativni Cetnost (pro celé dvojrozmérné

rozloZeni), kteri jo maximilni v 1-tém
radku;

fmy je maximalni relativni ¢etnost v j-tém
sloupei;

fm. jo maximum v margindlnim rozloZeni ve-
liciny X:

fm je maximum v margindlnim rozlozeni ve-
lidiny Y.

Obdobné znadeni pfijmeme pro absolutni
¢etnosti; po tupraviach dostaneme vzorec
vhodny k vypottam:

anm+ anj—n.m
A== e

20— (M +0m)

© (13)

Vlastnosti koeficientu:

1. Nemé interpretacni smysl, jsou-li data
soustiedéna v jednom ridku nebo v jednom
sloupeci.

2. Neni definovén pro piipad, ze data jsou
soustifedéna do jednoho pole tabulky.

3. Lezi v uzavieném intervalu [0, 1],
pritom:

a) A =0, kdyz X a Y jsou nezavislé, ale neplati
opak (mize mit nulovou hodnotu i v p¥pa-
dech statistické zavislosti);

b) A = 1, pravé kdyZ hodnoty obou znakl

jsou pro danou populaci jednoznaéné pdro-
vany, tj. kazdy riadek a kazdy sloupec v ta-
bulce obsahuje privé jedno nenulové pole.

4. Neni citlivy na libovolné permutace
radkl a sloupeli; zdroven nezavisi na zméné
role sloupcové a Fddkové proménné (toto je
vlastnost symetrizace; u asymetrickych koefi-
cientl neplati).

5. Lezi mezi Ay)x a Ax/y véetné.

Jeho vyhodou je opét vypocetni jedno-
duchost, a proto se poufivd hlavné pro rychlé
analyzy dat s ruénimi vypoéty. Jeho ne-
vyhodou je vlastnost 3a), ve které opét
chybi ekvivalence mezi nabyvinim nulové
hodnoty a pripadem statistické nezavislosti
obou znaku.

B. Symetrizovany Wallisiw koeficient propor-
ciondlni predilce

Zcela stejnym postupem symetrizace, ale
za pouziti modelu proporciondlni predikece
dostaneme vzorec

f 1.
%ZZI(fu-—rm (‘f;j’)] 14)

1—31Y 6126
Tento vzorec opét ma tu vlastnost, Ze ¢tverce
rozdilu otekdvanych Cetnosti a skuteénych
¢etnosti v polich jsou vazeny — vahy jsou
nyni symetrické vzhledem ki a j (tj. k fadkim
a sloupetim). Za vypocetni formuli muaze byt
vzat naptiklad néktery z uvedenych vyrazi:

n ZZ [(mlu —n;.n j)2 (ni T j)

(17)
Vlastnosti jsou stejné jako u 2, jen s tim
rozdilem. Ze misto 3a) mame poiadovanou
ekvivalenci:
=0, pravé kdyz X a Y jsou statisticky
nezdvislé, tj. fij = fif; pro viechny dvojice
i, j (pole tabulky).
Pfi vypolétu vynechivame prazdné radky
a prazdné sloupce.
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C. Symetrizovany informadnt koeficient

Symetrizaénf princip miiZeme pouZit i pro
zobecnény vzorec (7) pfi dosazeni entropif.

Navrhujeme zde koeficient, ktery z tohoto
piistupu vyplyva; jeho tvar uddvé vzorec:

IX,Y)
C=1EX) + 5T (18)
_ __EQ(L] |
=2 [1 HX) + J(Y) (19)

— 2% fi;log fyy

=2P_

— Y fi.logfy, — Y flogf

] (20)

nlogn — Zz ny; log ny;

=211— :
[ 2n log n — Z ny, log ny, — Z n jlog n,;] &

Vlastnosti jsou stejné jako u koeficientu 1
(viz pfedchazejici oddil). Vypocet koeficientu
je v8ak daleko snadnéjsf, mame-li k dispozici
tabulky k log k, resp. — p log p.

D. Koeficienty zalofené na statistice chi —
kvadrdt

Klasické koeficienty jsou zavedeny pro sy-
metrické vztahy a jsou zaloZeny na zcela
jiné myslence nez koeficienty predikéni.

Vychézime ze stavu nezdvislosti a hleddme
néjaké charakteristiky, které by porovnavaly
stav dany v tabulce vzhledem ke stavu
nezavislosti. K. Pearson navrhl ,,miru vzda-
lenosti‘‘, kterd je takovou charakteristikou,
odrazejici ,,vzdalenost‘* dvourozmérného roz-
loZen{ ¢etnosti v tabulce od rozloZeni, které by
odpovidalo pfipadu nezdvislosti pfi stejnych
margindlnich Getnostech:

£y — £1.£,)°
A~nZZ“%ﬁ;” (22)

=22 T, %)
n

=n>> — vy (24)

(ZZ -nn—, ) (25)

Za charakteristiku vzdélenosti u jednoho
pole byl vzat vyraz (fi; — fy. f5)2; (v litera-
tufe se oviem vyskytly i jiné typy takovychto
vzddlenosti).

Posledni dva vzorce pouzivéme pro vy-
pocet.
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Velicinu chi-kvadrat musime normovat
tak, aby leZela mezi nulou a jedni¢kou
véetné a aby tak vyhovovala poZadavkim
gpecifikovanym v § 2. Z mnoha pokusi
o normalizaci je nejlepsf koeficient Cramérav:

Cr = x*

n.min(r—1,s—1) (26)

Pfi vypoétu vynechidvime nulové fidky
a sloupce a tim také sniZujeme pifsludné
hodnoty r a s ve vzorei.

Vlastnosti koeficientu:

1. Nemd vécny smysl, jsou-li data sou-
stfedéna pouze v jednom sloupci nebo pouze
v jednom Fadku.

2. Nenf definovan pro nulové sloupce nebo
fidky — ty musime pii vypoétu vynechdvat;
s takovou podminkou je definovdn vidy,
kdyz min (r — 1, s — 1) neni nula, to zna-
mend, Ze data nejsou soustiedéna v jednom
fddku nebo sloupei.

3. Lezi mezi nulou a jedni¢kou véetné pro
libovolné rozméry tabulky:

a) Cr =0, pravé kdyz X a Y jsou nezivislé,
b) Cr = 1, pravé kdyz je zdvislost kompletni.

4. Je invariantni vzhledem k libovolné
permutaci sloupc nebo Fadki, je symetricky
vzhledem k piehozeni fidkové a sloupcové
proménné.

Tento typ koeficientit nelze doporudit,
protoZze nejsou zalofeny na dobfe interpreto-
vatelném modelu. Je to nizor, ktery se v lite-
ratuie vyskytl jiz v zdkladni praci Goodman-
Kruskalové [2]. Chi-kvadrit je statistika,
kterd je jednozna¢né piijata pro testovén{
nezivislosti a jako takova se dobfe osvédéila
(v poslednf dobé se viak i od ni upoustf
na ukor statistik teorie informace). Testovan{
nezivislosti a méfeni zdvislosti jsou viak



dvé zcela ruzné tlohy, které vychdzeji ze
zcela raznych vstupt do vyzkumu a z jinych
modela analyzy dat.

Vzhledem k tomu, %e volba zdkladni
charakteristiky odpovidd nulové hypotéze
nezdvislosti, ale neodpovidd modelu mé¥enf
statistické zivislosti, je cesta adaptace cha-
rakteristiky 2 na koeficient statistické za-
vislosti dosti libovolnd. Vysledkem riiznych
adaptaci je dnes celd Fada riznych normali-
zacf této charakteristiky (Pearsontiv norma-
lizovany koeficient, Cuprovﬁv koeficient,
vySe uvedeny Cramérav koeficient a dalsf).
Libovolnost zavedeni koneéného tvaru a ab-
gence zakladnfho modelu vede k neurdené
interpretaci. Zatimco ostatni v ¢lanku uve-
dené miry maji interpretaci pfirozenou a je-
jich numerické hodnoty majf{ jednoznainy
obsah, chi-kvadritové miry sice slouZi k ori-
entaci v datech, ale obsah jim prifazovat
nelze. Proto je také nespravné nasazovat je
v dalsich slozitéj$ich modelech, do nichZ
musf vstupovat miry s pfesné uréenym
obsahem (aby tak byly zajistény napiiklad
nivaznosti mér v kauzidlnich sitich apod.).

Nedostatek klasickych mér je patrny také
z toho, Ze neodpovidaji poZadavkim asy-
metri¢nosti a symetri¢nosti a Ze tyto dva
pripady nerozlisuji.

Chi-kvadritové miry jsou dneSnim vy-
vojem matematické statistiky plekondny;
jisté splnily svoji roli ve vyvoji statistického
my8leni, v dne$ni dobé by ale bylo vhodné
nahradit je mérami, které odpovidaji mo-
dernim pozadavkam metodologie prices daty
a jsou provéfeny jak matematickostatistickou
teorii, tak praxi vyzkumu.

Duvodem pro jejich zachovivdni nemiize
byt to, Ze jsou (nebo byly) béZné v nasich
vyzkumech pouziviny a Ze je tieba je
udrZet pro srovnatelnost — v nasich vyzku-
mech sice pouzivany byly, ale v tak raznych
nejednotnych variantich, Ze srovnatelnost
hodnot stejné neni mozZn4.

Ani argument, %e vystupujf ve vétSiné
soutasnych programi, neobstoji; je totiZ
velmi snadné doprogramovat nebo piipro-
gramovat vzoree, nebof vychodisko (kon-
tingenéni tabulka) zlistivd stejné.

5. Numerické priklady!®

Pii sociologickém Setfeni postoji (viz po-
znamka 10) byly polozeny (mimo jiné)

napfiklad otdzky, které vyistily v ndsledu-
jlef znaky:

A. Podle ndzoru respondenta je modernizace
a piestavba historické édsti mésta
1 — nezbytn4,
2 — mohla by pocdkat,
3 —respondent nevi, nerozumi témto
vécem.

B. Podle nazoru respondenta by méla pfe-

stavba probihat tak,

1 — aby se vétsina obyvatel mohla vrétit
do této ¢tvrti,

2—1zZe by se vétsina obyvatel méla
stéhovat jinam,

3 — respondentovi na tom nezdlezi,

4 — respondent nevi.

C. Respondent fika za sebe a svou rodinu,
Ze po skonéeni restauraci bytového fondu:
1 — by se chtéli v kazdém piipadé vratit
do svého domu,

2 — by chtéli bydlet v téze étvrti (bez
ohledu na dam),

3 — by dali prednost jiné &tvrti,

4 — by se odstéhovali mimo Tabor,

5 —je pro jiné fefeni (napf. dum du-
choden),

6 — nevi, je mu to jedno.

D. Nejvyssi dosaZené vzdélani respondenta:
1 — nedokonéené zikladni,
2 — zakladni,
3 — zdkladni a vyucen,
4 — strednfi bez maturity,
5§ — stitedni vSeobecné s maturitou,
6 — stiedni odborné s maturitou,
7 — vysokoskolské.

Piedevdim si uvédomime, Ze koeficienty
spoc¢itané pro uvedené soubory respondentit
(viz nize), jsou vybérové koeficienty pro
celou populaci, tzn., Ze bychom méli s koefi-
cientem poditat i jeho konfidenéni interval,
abychom mohli vysledek zobecnit. Tento
problém jsme vSak nefefili a nebudeme se jim
zabyvat ani zde.

V tabulkdch jsou slouteny nékteré ka-
tegorie; zajimd nds napfiklad vztah k histo-
rické Casbi mésta (takova uprava kategorif
se déld Casto: data se ziskavajl pro jemnéjsi
znak — podrobnéjsi déleni kategorii — ktery
ge pak dcelové ziif, nékdy i nékolika zpu-
soby). Respondenti, ktefi neodpovédéli ale-

1 Oba piiklady jsou vzaty z vyzkumu postoju
obyvatel historického jddra mésta Tdbor k otdzkdm
rekonstrukece, jeho? autory jsou J. Linhart a M.
Matéju. J. Linhartovi zde chceme vyjadfit podé-

kovan{ za laskavé poskytnut{ dat, pomoc pfi jejich
vybéru a prubéiny zajem o tento text. Sludovan{
kategori{ bylo provedeno autory.

413



Vzdélén{

spoii na jednu otdzku, nebyli do tabulky
zafazeni.

Tabulka 2 je piikladem asymetrického
vztahu ,,vzdéldni — ndzor na modernizaci
mésta‘“.

Tabulka 2.
Nutnost prestavby
‘ A
D Celkem
i 1 2 3
[
(1,2) /li‘) 32 24 189
(3, 4) /129 26 13 168
(5,6,7) /58 6 0 64
Celkem /3&) 64 37 421
A. Vypolet Aa/D:
1. Zatrhneme maxima v fddeich
nim = 133 nom = 129 ngm = 58
ng, = 320 n = 421
2. Spoéteme

Znym = 133 + 129 4 58 = 320

3. Dosadime do vzorce (2)

_320—320
T 421320

Znim — D m
n—DnNm

Aap =

B. Vypotet TA/D:

1. V kazdém fadku nalezneme soucet étverci
absolutnich &etnosti, ZZn ; tato &isla délime
piislusnymi fddkovym soudty:

nl Y onZ = (1292 4 262 4 132) : 168 —
2

= 104,083

1
— ¥ njy = (582 4 62 + 07): 64 = 53,125
3

2. Soucdet téchto ¢isel (259,266) nasobime n:
259,266 x 421 = 109 150,986 — 109 151
3. Soucet Ctvercti margindlniho fddku:

Znj = 3202 + 642 4 372 = 107 865

n2 = 4212 = 177 241
4. Dosadime do vzorce (6):

109151 — 107 865 1286

AP = 17794l — 107865 60376 0

C. Vypoclet informaéni miry:

1. Nejprve ziskdme piisluiné hodnoty n log n
pro dosazeni do vzorce (l1); zde je pro
ndzornost vypisujeme do tabulky (ve vy-
podtech pak tato ¢isla pfimo naéitéme na
kalkulacce):

2. Z téchto ¢isel ziskdme Xnj; log ny; jako
soucet hodnot ve vnitfni ¢dsti tabulky.
Tato hodnota se rovnd 1828,8201.

Zn; log n;, = soutet v poslednim sloupci
(bez pravého dolniho rohového pole tabulky,
kterd odpovidd hodnoté n) = 2117,6846.

Zn; log n; = soudet posledniho Fadku
(opét bez pravého dolnfho rohového pole
tabulky) = 2245,6352.

n log n je v pravém dolnim rohovém poli:
2543,9484

3. Dosadime do vzorce (11)

1y 1332 4 392 4 e tps 1 2117.6846 — 18288201
= W= 242) : 189 = pa=1— e =
o e Ty = LSRN e 2T o 240 / 2543,0484 — 22456352
= 102,058 — 1—0,9683 = 0,0317
Tabulka 3.

650,4164 110,9035 76,2733 990,6902
626,9158 84,7105 76,2733 721,6264
235,56057 10,7506 0,0000 266,1685
1 845,8627 266,1685 133,6040 2 543,9484
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Tabulka 4.

B-Nézor nandvrat C — Préani nastéhovat se zpét
ostatnich Soucet
obyvatel 1 2 3 (4, 5, 6)
1 /198 x 31x 20 156 264 x
2 12 8 /21 6 47
3. 4) /38 25 24 x 20x 107
Soutet /248 64 65 41 418

Viechny miry majf nizké hodnoty. Nézory
na prestavbu jsou na vzdélanf statisticky
velmi milo zavislé; pFi daldi interpretaci
zjistime modélni volbu spoleénou vSem sku-
pindm — tato kategorie je dominantni.

Ptiklad symetrické asociace (viz tabulku 4)

A. Vypolet \:

1. Zatrhneme ¥4dkové maxima v tab. &.4 (L)
Nim = 198 ngm = 21 ngn = 38
Xny, = 257
2. Kfizkem ozna¢ime sloupcovéd maxima ()
Nm1 = 198 npme =31 npg = 24
Ny = 20 Zng; = 273
3. Zjistime maxima u margindlnich rozloZen{

Ny, = 264 np = 248
4. Dosadime do vzorce (13)

L 2T+ 273 —264—248 18
T 2% 418 —264 — 248 324
= 0,05555 = 0,0556
B. Vypolet t:

Postup asymetrického pfipadu aplikujeme
dvakrit, a to jednou ve sméru fadkl a poté
ve sméru sloupcii:

1. a) Spotitdme vyrazy:

L Y n? = 40790 : 264 = 154,51
ny,

1 Y nl = 685 :47 = 14,57
N2,

1
™ > n? = 3045 : 107 = 28,46

b) Obdobné:

Loy nz— 16448

1
— Y n?=2578
. n.g

1
1 Y nZ= 2949 — Y n?=16,12
.3 n.sg

¢) Soutet vyrazi ad a) a ad b) je roven
197,54 4- 235,87 = 433,41

2. Nalezneme soulet ¢tverci margindlnich
rozloZeni

a) u souctového fadku (veli¢iny Y):
Zn; = 71 506
b) u souétového sloupce (veliéiny X):
Zng, = 83 354
¢) dohromady soudet margindlnich étverci:

154 860

3. Vysledek dosadime do vzorce (17):
_ 418 x 43341 — 154 860

T X 174794 — 154860
26 305,38

7194 588

= 0,1352

C. Vipotet {:

1. K vypottu informaéni miry musime ziskat
nejprve piislusné hodnoty n log n; opét je
pro nézornost vypifeme do tabulky ¢. 5.

2. Z tabulky 5 zjistime XXny log ny =
== 1730,0940
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Tabulka 5.

1047,0759 106,4536 59,9146 40,6208 1472,0506
29,8189 16,8355 63,9350 10,7506 180,9569

138,2283 80,4719 76,2733 59,0146 499,9927

1367,3303 266,1685 271,3351 152,25656 2522,8312

2n jlog n; = 2057,0904
Zny, log ny, = 2153,0002

nlogn = 2522,8312

2522,8312 — 1730,0940

3) Uvedené diléi vysledky dosadime do
vzorce (21):

a=2[1—

D. Cramériw koeficient Cr:

1. Nejprve spotitdame chi-kvadrat podle
vzorce (25); pfitom ovSem nim staéi ziskat
hodnotu v zdvorce, nebot n se ve vzorci (26)
zkritf: 32 =n(1,2161 —1)

lﬂ(}_l___l = 0,1080

9 phinbid

2. Cr =

6, Zavéry

V élanku jsme se nezabyvali problematikou
konfidenénich intervala, ani jsme neuvadéli
testy hypotéz; vzorce a vypolty jsou pro
tyto Glohy dost obtiZzné a jen ziidka je
budeme poéitat ruéné. Zijemce odkazujeme
na uvedenou statistickou literaturu (Good-
man, Kruskal [4], Zvarové [9]) a na odbornou
statistickou konzultaci.

Pro nedostatek mista jsme se také neza-
byvali ptipadem &tyfpolnich tabulek, u nichz
se vzoree pro jednotlivé miry znaéné zjedno-
duduji a v riznych pripadech i ztotoZiiuji.
Problém étyfpolnich tabulek vSak zasluhuje
samostatné zhodnoceni, protoZe pouZivime
razné modely, odpovidajici riznym pozadim
dichotomizace znaki.

P¥i aplikaci zdsadné odliSujeme symetrické
a asymetrické vztahy. Doporucujeme ne-
pouzivat chi-kvadritové normované miry.
Podle naSeho ndzoru a zkuSenosti je pro
rychlou analyzu a orientaci v datech nejlepsi
koeficient A, pro vypolet na poditaéi viak
vidy volime t nebo L. Vybér mezi témito
koeficienty je vcelku libovolny. Jak pre-
dikéni model, tak model teorie informace

4168

2 x 2522,8312 — (2153,0002 4 2057,0904)

] = 0,1028

je heuristicky snadno pochopitelny a oba
vyhovuji naSim poZadavkim. Koeficienty
vychazejiei z teorie informace maji vsak
dffve uvedenou vyhodu, totiz Ze pii moznosti
pouziti tabulek jsou snadno spotitatelné. To
je dulezité obzvlisté v piipadech, kdy pro-
vadime vyznamové Gpravy tabulek (slucu-
jeme kategorie), pfepoditiviame jednotlivé
miry spoéitané pro puvodni tabulku poéi-
tatem a potfebujeme zarudit srovnatelnost
8 jinymi tabulkami & s tabulkou pavodni.
U téchto koeficientii jsou zajimavé také
mezivypocty, které lze pouiit i pro jiné
alohy analyzy dat.

Asymetrické a symetrické koeficienty stej-
ného typu jsou srovnatelné, protoze jsou
srovnatelné i jejich modely, z nichZz plyne
véeny smysl koeficientd. Je v3ak samo-
zFejmé, Ze nelze srovnivat T u jedné tabulky
a { u druhé tabulky, at jde o stav symetricky
nebo asymetricky.

V praxi vétsinou pfi vypoétech vynecha-
vame kategorie ,,odmitnuti odpovédi®, ,,chy-
béjici informace* atd. a podet jednotek
vstupujicich do tabulky tak sniZujeme.

Vsechny asymetrické miry, které jsme zde
uvadéli, mohou slouZit také pro téely kom-
parace (v uloze jednoduché stratifikace),
tj. srovndvani diléich souborii. Malé hodnoty
mér znaéi vysokou podobnost statistickych
rozloZeni znakt v diléich souborech, vysoké
hodnoty velkou nepodobnost (heterogenitu).
Koeficient A muze slouZit také jako charak.
teristika pro testovani hypotézy, kterd ifka,
ze vsechny diléi soubory maji stejnou mo-
dalnf kategorii.
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Pesome

Pxerak fI. - Pikerakosa B.: Hamepenne
CTATHCTHYECKOH 3aBACHMOCTH HOMIHAABHBIX
UPH3LIAKOB

B anasise coloJOrM4eCKIX JanilbiX CYIeCTBeH-
HYI0 poJdbL Urpaet nousarTie CTATHCTIUCCKOIT 3aBH-
CHMOCTIT MCRIUY OTJICTBLIBIMIT TICpPeMEeHHbIMIT. Cra-
ThbsI BBOJIUT B H])l)(’l.ﬂ(‘hlil'l‘l"(_V m3zmepenist CTaTH-
CTMYECKOH 3aBHCHMOCTH HOMITHAJBHBIX npH3Ha-
KOR (aCCOIIALIA KAaUYeCTBe L X nepeyceHARX). He
AHCKYTHPYCTCH OTHOIEHe CTATHCTHYECKON 3a-
BIICHMOCTII If KaY3aab1I0il peanbuoll 3aBHCHMOCTH
ABTOPHL COCPENOTOMHBAIOT CROE BHIIMAIINC HA MO-
JCJX, KOTOpBIC NPUBOIAT K JM3Mepennio CrarTi-
CTHUCCKOI 3aBIICIMOCTI.

Bo BTOpOM 9acTH BHICKA3LIBAIOTCS ollune Tpe-
GoRanms K MCPaM CTATHCTHYCCKON 3aBICIMOCTH
W ODUCHMIBAETCA JPHELNI, KOTOPRHE MOMeET Ciay-
HTL 0CHOBOIT LI oTAenbHbIX Mep. TpeTns vacTn
BBOJMT MOJEb JUIST H3MEPCHIS aCCHMETPIYECKOTO
CTATHCTIMOCKOTO OTHONIENIs. DTOT IPHHINI BBeJT
TyTTvaA Kak OTHOCHTEALHOE VMCHBIICHIE BEpO-
ATHOCTH OHMOKN HIPCUTKILUIN SepeNennioil Y upn
BHAMIMM BeJWYHHL IepeMenuoil X B cpaBuennin
C BCPOATHNCTBRIO ONMMOKN Hpeankmi Y 6e3 3na-
unst X 310 oTHOUICHIC, TPIAeHenHoe K KOHKpeT-
AOIl KoutHnrewtHoi Tabiie, ABINCTCH Mepoi
CTATHCTHYCCKOI 3aBUCHMOCTI ACCHIMCTPIIIECKOTO
TIIA. ECITH MBI B 3TY MOJIeJIb TIOCTABIIM MOJLAILEOC
OpegiKUMONHOe IPaBMII0, MBI ITOJYIAM QOPMY I
(1), (2); » I'yrrvama siBasieTcA Xopowell Mepoi
past ORICTPHIX aHAAN30B, OHO JIeTKO TOJJAeTCs

TOAICYNTAHHI0, OIHAKO Y HEro TOT HeHOCTaTOK,
4TO HYJeBas BeJUIYHHEA KOXQQIINCHTA HE IKBH-
BAJICHTHA COCTOAHHMIO CTATUCTHYECKOIH He3aBHCH-
MOCTH, HO TOJBKO COCTOSIMIIIO TOFRAECTBA MORAJD-
HEIX KaTeropuit ormenbhbX cyOnowyasiyri. Hpo-
OOPUHOHANbHOE NPEUKIHOHIOE LPABIAO, NPH-
meHeHHoe B ofieit goparyae (3), npusoaur x dop-
myaaM (4), (5), (6). Roadpnmient Bananca t ymxe
SABJSIETCA TPEBOCXOMHOE Mepoil, KoTopas BHI-
LOJIHAET BCe ANPHOPY HOCTaBJIeHHbe TpedoBauI.

Ecan obobnmts mpinnpunt (3) B BHpaskenine
APYTHM 06pasoM HCONpeleJeHHOCTH B IANHBIX,
To MBI Hoaydin oouyie Gopuyay (7). Hpn mo-
CTABJCHNI 3HAYCHNIL SITPOIHIU (HOBATIE TCOPHH
nagopyauii) Me Doayanm opymyasr (8)—(11)
AIsE §. 3TOT KOIQPHUMCHT BLIIOJHSICT OAHIIAKOBO
Xopouro nce TpeboBanisg K CTaTHCTHYECKIIM MepaM
3aBHCHMOCTH HOMHHAJBHRX TplisHakoB. Cpepx
TOro 0H o0Jajaer TeM IPECAMYDIECTBOM, UTO JO-
BOJNBHO TPNCTO €0 MOIKHO TIONCYNTATL, eCHH
B HANICM PacHOPMIKENAN eCTh TalJNIK 3BaieHnl
K log K H g1 ecTeCTBeHHBIX K 1M p log p ans p
n3 naTepsaaa (0,1).

UersepTas 4acTh BBOANT IPHHIMHN CHMMETpPH-
3aLMMA IpeAlleCTBYIOIHX Mojlesell Ha cayuaii, uto
MBIl He B COCTOSIHMH OHPeUeINTh HalpaBsiieHe
ACCHMETPHYECKOTO OTHOUCHIS, 3TOT IPHHIHUI
OPUBOIUT K CUMMETPHM3IPOBAHHOMY A [PODPMYIHI
(12), (13)] 1 kK cuMMeTpH3IpoBaHHOMY * [GODPMYIILI
(14)—(17)): aBTopsl upejdaraioT TaxXKe aHaJO-
HYHYIO CHMMeTpH3anmio jas  koedpnumenta §
[dopayam (18)—(21)]. Ilpenvynmiecrso mocnen-
Hero Kosduiuenta 3aKal04aeTcsl OmsThH B OPO-
CTOil BO3MOMKHOCTH MOACHNTAHNA NPH HAJHYIH
HOCTYIHHBIX COOTBeTCTBYIONUIX Tabumin. 1Ipenny-
IeCTBa H HeJOCTATKII CHMMETPH3NPOBAHHBIX Mep
aHAJIOIMYHB Kak H Yy MEpP aCCHMEeTPHYECKIX.

Hunaccunueckiie chi-kpagpaTHLle MepLl B cTaThe
npeAcTasicHs Toabko Kodddimuentoy Kpamepa
(26). Ho oHu ansa mccaenosaTeJbCKUX 1medeil He
PCKROMEHAYIOTCA, TAK KaK OHI e HMEIOT HAKaKOH
OCHOBHOII MOfle1#, KOTopas Janajia O BO3MOGK-
HOCTh HX TOJAKOBOIi, OAIHAKOBOII H TaKKe IpO-
CTOIl ITHTe P peTalHH.

Ilatag wacTh COmePNT 1T MHCIACHHBIC TIPUMEDH
IUIsE aCCHMCOTPHYECKOTO W CIIMMETPHYECKOro OT-
HoweHNs nepemennsX. Hi Tectsl rumnores o ko-
opdnuEenTax HM X JOBepHTEILILIE H HTeDPBAJLE
HE NTPHBORATCA.

Summary

Rehak J. - Rehakova B.: Measurement of
Statistical Dependence Among Nominal Va-
riables

The notion of statistical dependence (associ-
ation) among individual variables plays a
substantial part in the analysis of sociological
data. The paper introduces into problems of
measuring the statistical dependence of
nominal variables (association of qualitative
variables). The relation between statistical
dependence and causal real dependence is not
discussed: the authors pay attention to models
leading to the measurement of statistical
dependence.

Part 2 presents general demands on the
measures of statistical dependence and de-
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scribes the principle that may form the basis
of the separate measures.

Part 3 introduces a model for measuring
the asymmetrical statistical relation. This
principle was introduced by Guttman as the
relative decrease of the probability of error in
predicting the variable Y if the value of the
variable X is known, relative to the prob-
ability of error in predicting Y if X is not
known. This relation applied to the concrete
contingency table is the measure of statistical
dependence of the asymmetric type. If the
modal prediction rule is introduced into this
model, we get the formulas (1), (2); Guttman’s
A is a good measure for quick analyses, it is
easily computable; its disadvantage, however,
lies in the fact that the zero value of the coef-
ficient is not equivalent to the statistical
independence but only to the case in which
the modal categories of individual sub-
populations coincide. The proportional pre-
diction rule applied in the general formula (3)
leads to the formulas (4), (5), (6). Wallis’
coefficient = then represents a perfect measure
fulfilling all a priori demands.

If principle (3) is generalized to differently
expressed uncertainties in the data, the
general formula (7) is obtained. By sub-
stituting the values of entropy (a concept of
the theory of information), we get the for-
mulas (8) — (11) for ¢. This coefficient equally
well fulfils all the demands on the statistical
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measures of aependence of nominal variables.
Moreover, it has the advantage that it may
be obtained by rather simple computation
if the tables of values k log k (for natural k)
or p log p (for p from the interval (0,11
are available.

Part 4 introduces the principle of the
symmetrization of the preceding models for
the case of our inability to determine the
direction of the asymmetrical relation. This
principle leads to a symmetrized 1 [formulas
(12), (13)] and to a symmetrized = [formulas
(14)—(17)]; the authors also suggest a similar
symmetrization for the coefficient { [formulas
(18), (21)]. Again, the advantage of the last
coefficient lies in a simple computability if
the respective tables are available. The
advantages and disadvantages of symmetrized
measures are analogous to those of asym-
metrical measures.

In the present paper, the classic x? measures
are represented only by Cramér's coefficient
(26). They are, however, not recommended
for research purposes, since they have no
basic model facilitating their reasonable,
unique and simple interpretation.

Part 5 contains numerical examples illu-
strating asymmetrical and symmetrical rela-
tions of the variables. Tests of hypotheses on
coefficients and their confidence intervals are
not mentioned.



