
Měření statistické závislosti 
nominálních znaků*

1. Úvodní poznámky

Statistická závislost je jedním z centrálních 
pojmů analýzy sociologických dat; je to 
pojem velice komplexní, zahrnuje mnoho 
různých aspektů a v souvislosti s ním je 
třeba vyrovnat se s celou řadou statistických 
metodologických úkolů, jako jsou:

a) vztah statistické a skutečné závislosti;
b) závislost dvou a více proměnných;
c) závislost dvou proměnných na celé po­

pulaci a podmíněné závislosti na dílčích 
souborech; parciální závislost;

d) zobecňování výsledků měření závislostí 
z výběrového souboru na soubor základní — 
testování hypotéz a konfidenční intervaly;

e) odlišení různých úrovní závislosti: no­
minální, ordinální, regresní (lineární, ne­
lineární apod.);

f) odlišení asymetrických a symetrických 
závislostí;

g) sledování závislostí více proměnných 
po dvojicích, resp. současné vyhodnocení 
celé závislosti sítě — závislostní modely;

h) volba přesného popisu, definice, modelu 
statistické závislosti, a tím určitého koefi­
cientu.

Tyto základní úlohy se vyskytují v každém 
sociologickém výzkumu, ve kterém se pracuje 
s pojmy statistická závislost, asociace, sou­
vislost; vždy je třeba se v uvedených bodech 
rozhodnout pro konkrétní alternativu.

V článku se chceme zaměřit na problém 
dvojice nominálních znaků, vztah asymet­
rický i symetrický, na modely, ze kterých
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vycházíme při konstrukci koeficientů a jež 
jsou základem pro interpretaci numerických 
výsledků.

Pro volbu takto zaměřeného tématu je 
několik důvodů:

1. Především je to potřeba praxe sociolo­
gického výzkumu (výzkumní pracovníci často 
žádají o konzultaci v tomto směru).

2. Chceme seznámit čtenáře se základy, 
na nichž jednotlivé koeficienty stojí; tato 
informace má posloužit adekvátnější volbě 
koeficientů a seznámit naši sociologickou 
veřejnost s technikami, které jsou prověřeny 
matematickostatistickou teorií i výzkumnou 
praxí a mohou být tedy doporučeny k obec­
nému použití. Znalost modelů a východisek 
také omezí triviální chyby, např. srovnávání 
numerických hodnot různých typů koefi­
cientů, což může vést ke zcela absurdním 
výsledkům.

3. Chceme, aby základní vzorce byly 
čtenářům snadno dostupné; v praxi je často 
nutné spočítat některý koeficient pro několik 
málo tabulek — v tom případě samozřejmě 
nebudeme používat počítače, ale rozhodneme 
se pro ruční výpočty; často také potřebujeme 
spočítat některé míry pro rychlou orientaci 
v datech.

Rozeznáváme dva typy vzorců:
a) dejinitorické — vyjadřují smysl míry; 

většinou je možné tyto vzorce dobře přeložit 
do běžného jazyka, nejsou však vhodné pro 
výpočet, protože dosazování je velice pracné 
a velký počet aritmetických operací vede

* Cílem této stati je přispět praxi sociologického 
výzkumu informací o jednom z důležitých témat 
oboru metod a technik statistické analýzy dat. 
Příspěvek však může být současně chápán jako 
ilustrativní příloha k diskusi o měření. Měříme zde 
statistickou závislost v dvourozměrných kontin- 
genčních tabulkách — empirickým systémem jsou 
tedy kontingenční tabulky se dvěma vstupy. Tuto 
závislost měříme numericky — abstraktním systé­
mem je část reálné přímky. Abychom však mohli 
měřit, musíme přesně specifikovat, co rozumíme 
statistickou závislostí, musíme vytvořit model, jehož 
výsledkem je výpočetní formule, která je pravid­
lem, podle něhož (dosazením) provádíme zobrazení 
mezi objekty (tabulkami) a měřící stupnicí (částí 
reálné přímky). Výpočetní formule je zde zobraze­
ním z množiny kontingenčních tabulek na interval

^O.l^. Tím dostáváme měření, které není speci­
ficky sociologické. Sociologickým měřením se stane 
tehdy, když tento model použijeme jako mezistupeň 
pro zjištování vztahů (měření závislosti znaků) 
proměnných pro určitý daný soubor. V souvislosti 
s problematikou měření chceme upozornit na zá- 
měrnost názvu ,,Statistická závislost znaků“. Složi­
tost problematiky sociologického měření je totiž 
dále komplikována tím. že pro určitou vlastnost 
můžeme konstruovat více znaků a pro různé znaky 
téže vlastnosti dostaneme jiné hodnoty míry statis­
tické závislosti. I z toho je tedy vidět složitost 
vztahu ..vlastnost — znak“ a nutnost gnozeologicko- 
metodologické diskuse problému. Současně jsou 
patrny i meze aplikace statistických měr pro od­
halování skutečných vztahů.
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obvykle ke zvýšení numerických chyb. De- 
finitorický vzorec, který odráží obsah pojmu, 
obsahuje způsob interpretace výsledků, je 
překladem racionálních základních poža­
davků na míru či zprecizovaným vyjádřením 
výchozí intuice;

b) výpočetní — jsou vzorce formálně zcela 
ekvivalentní definitorickým, není z nich 
ovšem vždy vidět smysl a význam (i když 
v některých případech mohou ukázat další 
vlastnosti a možnosti dalších interpretací 
míry); jejich význam spočívá v tom, že 
zkracují výpočetní čas a námahu a též 
minimalizují numerické chyby (obsahují vět­
šinou menší počet operací dělení i operací 
vůbec). Výpočetní vzorec tedy obsahuje 
optimální algoritmus ručního výpočtu.

V této přehledové stati nám jde o problém, 
který hraje roli v metodách a technikách 
výzkumu, ve statistické analýze dat. Po­
jednáme o statistické závislosti, tj. o empi­
rických jevech, vztazích, o tom, jaké relace 
lze nalézt mezi daty. Jelikož náš technicko- 
matematický úkol je dosti rozsáhlý, nemůžeme 
se věnovat vztahu příčinnosti a statistické 
závislosti. Chceme tu však alespoň upozornit 
na to, že zaměňováni statistické, závislosti 
se skutečnou a reálnou kauzální závislosti 
je chybné a že je nejhrubším projevem empi­
rismu. (Tento problém by jistě zasluhoval 
samostatnou stát.) Koeficienty statistické 
závislosti můžeme používat jen v rámci teore­
tických vztahových modelů nebo při vyhledáváni 
a formulacích teoretických hypotéz — v obou 
případech je to pomocný aparát.

Jde tedy o problém statistický a závislost 
(resp. nezávislost) bude v celém dalším 
textu chápána v tomto smyslu.

Informace o statistickém vztahu je uložena 
ve dvourozměrném rozložení četnosti zkou­
maných proměnných a konstrukce jakého­
koli koeficientu znamená redukci informace 
[(r—1) (s — 1) údajů převádíme na jeden 
údaj]. Aby tato redukce byla účelná, aby 
měla smysl a byla pro praktické aplikace 
přeložitelná, musí odpovídat našim poža­
davkům a musí být založena na modelu,

který interpretaci a přeložitelnost redukované 
informace do jednoho koeficientu umožňuje. 
V článku uvádíme míry, které takový ro­
zumný model mají; u klasických měr (vznik­
lých normalizací chí-kvadrátu) tento model 
zcela chybí, a i když samy splňují požadavky 
na měření statistické závislosti, uvedené 
v druhé části, absence modelu znamená 
z hlediska moderního matematickostatistic- 
kého nazírání absenci základního požadavku, 
a proto tyto míry nemohou být doporučeny.

Rozhodně však nelze přeceňovat koefi­
cienty zde uváděné; informace kondenzo­
vaná a redukovaná v koeficientech je vý­
hodná pro analytickou práci s velkým 
počtem statistických vztahů. Při hlubší 
analýze se však neobejdeme bez studia a zhod­
nocení celé struktury kontingenční tabulky 
(dvojrozměrného rozložení četností), a to 
přímo analýzou relativních četností, různým 
seskupováním kategorií (úpravami původ­
ního znaku) nebo pomoci tzv. znaménkového 
schématu, které právě v podobných situacích 
je vhodným metodologickým aparátem.

Koeficienty mají tedy svou roli v určitém 
typu analýzy dat. Z modelu plynou možnosti 
i meze koeficientů. Jeho absence může vést 
k libo volnosti nasazování a interpretace.

Při analýze dat musíme ovšem odlišit dva 
typy úloh, které nás mohou zajímat:

a) odhalení existence závislosti, její signi­
fikantní prokázání — tuto úlohu řešíme 
testováním hypotéz (statistických);

b) měření síly závislosti.
Obě úlohy nelze směšovat, jejich role 

v postupu poznání založeném na analýze 
dat je různá; nám jde o problém druhý.

V těchto úvodních poznámkách ještě 
chceme upozonit na to, že formálně řešíme 
úlohu měřenír síly závislosti stejně jako úlo­
hu heterogenity (nepodobnosti) souborů.1-2 
Koeficienty zde uvedené lze tedy použít také 
v komparačních výzkumech jako míry po­
dobnosti či rozdílnosti populací (souborů dat).

1 Termín homogenní, resp. heterogenní má ve 
statistice dva významy:
a) Vztahuje se k podobnosti, resp. rozdílnosti sou­
borů dat — jde o podobnost statistických rozložení 
jednoho znaku v různých populacích, resp. ob­
lastech: v tomto významu je termín použit zde. 
Homogenní je ve statistice použito ve významu 
..směsitelný“ s jinými populacemi, aniž by se vý­
sledné rozložení relativních četností, resp. pravdě­
podobností. změnilo. Termín vychází z homogen- 
nosti (stejnorodosti) skupin dat.
b) Vztahuje se k podobnosti údajů v jedné skupině 
dat — jde o homogenitu souboru dat, tj. podobnost

jedinců v souboru vzhledem k určitému danému 
znaku: v tomto smyslu termín v článku nebudeme 
používat a nahradíme jej jiným termínem ,,ne­
určitost“, který odpovídá heterogenitě v souboru.

2 Ekvivalence úlohy nezávislosti (resp. závislosti) 
a homogenity (resp. heterogenity) souborů je vidět 
z toho, že určení dat do jednotlivých souborů si 
můžeme představit jako realizaci určitého znaku, 
jehož hodnoty jsou názvy souborů. Homogenita Je 
pak totéž jako prohlášení, že zkoumaný znak je na 
takto zavedeném znaku nezávislý, tj. rozložení hod­
not znaků je ve všech podsouborech stejné (jsou 
stejná podmíněná rozložení).



2. Měření závislosti asymetrického typu — 
principy

Předpokládejme, že u dvou proměnných 
(resp. znaků) X, Y můžeme určit, která 
z nich je nezávisle (např. X) a která závisle 
proměnná (např. Y), tzn., že můžeme při­
jmout závislostní model (schéma)

X->Y

(X ovlivňuje Y, X časově předchází Y, 
X je nezávisle a Y závisle proměnná atp.).

Úkolem měření statistické závislosti je 
především odvodit nějaké smysluplné míry, 
které by charakterizovaly těsnost statistic­
kého vztahu obou proměnných.

Intuitivní požadavky na tyto míry mohou 
být vysloveny obecně ještě dříve, než za­
vedeme přesnou definici statistické závislosti 
pouze s intuitivním chápáním tohoto termínu.

Obecné požadavky na míru statistické 
závislosti a:

a) 0 < a < 1 (požadavek normalizace mě­
řicí stupnice, který je motivován zvykem 
a tím, že se nám s takovou stupnicí dobře 
pracuje);

b) a = 0, nastane právě když obě proměnné 
(znaky), které uvažujeme, jsou statisticky ne­
závislé;

a = 1 nastane právě když obě proměnné 
jsou jednoznačně vázány, tj. jsou funkčně zá­
vislé.3 (Tyto dva požadavky vymezují krajní 
hodnoty a určují orientaci stupnice.)

c) a == 0, nastává nepatrný odklon od ne­
závislosti; a = 1, nastává nepatrný odklon od 
závislosti (upřesnění významu krajních hod­
not);

d) a je invariantní k uspořádání sloupců 
a řádků tabulky, [požadavek určuje nomi­
nální úroveň — u nominálních znaků je 
uspořádání hodnot (kategorií) zcela libo­
volné, proto míra souvislosti musí být stejná, 
ať už volíme uspořádání jakékoli);

e) čím větší je a, tím větší je závislost — 
u tohoto intuitivního požadavku je však 
třeba specifikovat jednoznačně jeho význam 
tím, že určíme konkrétní model.

Statistická data z určitého souboru uspo­
řádaná v tabulce, tj. dvojrozměrné sdružené 
statistické rozložení četností u hodnot obou 
znaků, marginální rozložení každého znaku 
zvlášť a podmíněná rozložení nám přinášejí 
jednak informaci o každé proměnné zvlášť, 
jednak o vztahu obou proměnných v daném 
souboru dat. Princip, na kterém je většina 
zde uvedených měr založena, lze verbálně 
popsat takto: Předpokládáme, žc platí model 
X —>■ Y. Proměnná Y má dané statistické 
rozložení četností pro zkoumaný soubor; 
toto rozložení je bud více, nebo méně ne­
určité v tom smyslu, že nám přináší méně 
nebo více informace o náhodně zvoleném 
jedinci — jestliže jsou všichni jedinci v jedné 
kategorii znaku Y, pak můžeme samozřejmě 
u každého z nich jednoznačně určit, do které 
kategorie patří, aniž bychom to zkoumali 
složitými metodami; jsou-li naproti tomu 
jednotky rozmístěny stejnoměrně v katego­
riích, pak u náhodně zvolené jednotky bude 
naše predikce správné hodnoty riskantní 
(v pravděpodobnostním smyslu). Pro každé 
rozložení četností znaku Y máme tedy jistý 
stupeň neurčitosti. Z hlediska znaku X se 
daný soubor dat rozpadá na části (sub­
populace, dílčí soubory, oblasti, strata apod.). 
V každé této části můžeme zjistit podmíněné 
rozložení četností znaku Y. To znamená, 
že nalezneme relativní četnosti, jimiž jsou 
hodnoty znaku Y zastoupeny v jednotlivých 
dílčích souborech. Ve většině případů se 
budou tato podmíněná rozložení lišit; budou 
se tedy lišit i predikce (určování hodnot) 
a neurčitost predikcí hodnot Y u náhodně 
zvolených jednotek vybraných z jednotli­
vých dílčích populací. Určíme-li jakékoli 
predikční pravidlo vycházející z rozložení 
četností, bude jistě lépe vycházet z dílčího 
podmíněného rozložení četností, které zna­
mená upřesnění informace o jednotce. Bu­
deme tedy očekávat, že specifikace X nám 
umožní lépe „uhodnout“ Y, tj., že X přináší 
nějakou informaci (empirickou) o Y, že zna­
lost X redukuje neurčitost Y.

Jestliže redukce neurčitosti v datech je 
velká, pak závislost X —> Y je silná (těsná), 
jestliže je redukce zanedbatelná, pak ne­
můžeme o závislosti mluvit.

3 Někdy se tento požadavek formuluje tak, že 
koeficient nabývá hodnoty 1 právě tehdy, když 
četnostní (resp. pravděpodobnostní) rozložení obou 
proměnných je singulární. V sociologické analýze 
se zdá být rozumnější požadavek uvedený v textu; 
znamená, že pro každou hodnotu nezávisle pro­
měnné můžeme pro daný soubor dat jednoznačně 
určit hodnotu závislé proměnné. Podrobnější dis­

kuse těchto dvou přístupů by připadala v úvahu 
v případech symetrického vztahu. Pojem funkční 
závislosti je vzat z matematiky a je chápán jako 
jednoznačné zobrazení z množiny hodnot X do 
množiny hodnot Y, zprostředkované kontingenční 
tabulkou; takto chápaná funkční závislost je v na­
šem případě tedy krajním případem statistické 
závislosti.
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Úkol4 odvození míry tedy zní:
— nalézt nějakou míru neurčitosti,
— vyjádřit matematicky redukci neurčitosti 

plynoucí ze znalosti hodnoty X a položit ji 
do relace k původní neurčitosti pro­
měnné Y.

Před upřesněním modelů zaveďme ještě 
značení, které je obvyklé ve statistických 
příručkách a které bude jednotně používáno 
i v tomto textu (viz tah. 1).

Tabulka 1.
Kategorie znaku Y

K
at

eg
or

ie
 zn

ak
u

njj jo počet statistických jednotek v souboru, 
které mají současné hodnotu i-té kategorie znaku X 
a j-tó kategorie znaku Y:

ni. jo řádkový součet — počet jednotek, které 
mají hodnotu i-tó kategorie znaku X;

n.j jo sloupcový součet — počet jednotek, které 
mají hodnotu j-tó kategorie znaku Y;

n je celkový počet jednotek uvažovaného souboru 
vstupujících do uvedené kontingenční tabulky.

Hodnoty ni. určují marginální rozložení znaku X, 
hodnoty n.j určují marginální rozložení znaku Y.

Písmeny fij, fi, f.j budeme značit relativní čet­
nosti z celého souboru5 v téže tabulce, tzn., že to

. nU ni. n.j v
jsou postupné • n ’ součet hodnot f|j je

jednička.

Nakonec ještě musíme vyslovit definici 
statistické nezávislosti. Ta je zcela jedno­
značná, zatímco pojem stupně závislosti 
dvou proměnných jc specifikován u každého 
modelu trochu jinak, jak uvidíme později.

Znaky X a Y jsou statisticky vzájemně 
nezávislé, jestliže platí pro všechny relativní 
četnosti v tabulce vztah:

flj = ÍL fj

(tzn., že výskyty všech dvojic hodnot X a Y 
jsou statisticky nezávislé jevy).

Pro absolutní četnosti lze tento vztah vy­
jádřit tak, že tzv. ,,očekávané četnosti“ jsou 
rovny skutečným zjištěným četnostem:

ni. nj 
nti = -

Podrobnější diskuse tohoto pojmu a motivaci 
definice nalezne čtenář v kterékoli učebnici 
počtu pravděpodobnosti.

Lze k ní přejít z definice nezávislosti jedné 
proměnné na druhé: Y je nezávislá na X, 
jestliže rozložení četností Y ve všech dílčích 
podsouborech určených hodnotami X jsou 
stejná, tj. jestliže rozložení Y postupně 
podmíněná jednotlivými hodnotami X jsou 
stejná — a tedy stejná jako nepodmíněné 
rozložení Y (specifikace podle hodnoty X 
nemění statistickou informaci o Y, uloženou 
v rozložení četností).

Označíme-li (fi/i, £2/1, •. ., fs/i) podmíněné 
relativní četnosti Y v subpopulaci, která 
odpovídá i-té kategorii znaku X, pak v pří­
padě nezávislosti Y na X jsou všechna tato 
rozložení stejná mezi sebou a též stejná jako 
hodnoty (fi., £2., . ... fs.). Poznamenejme, 
že fj/i = nij/ni. a že ^fj.i = I pro všechna 

j
i = 1,2. .. ., r.

K definici vzájemné nezávislosti přejdeme 
odtud velice snadno jednoduchými algebraic­
kými úpravami a konstatováním, že „Y je 
statisticky nezávislé na X o X je statisticky 
nezávislé na Y“. Tato věta říká, že statistická 
nezávislost je symetrická relace na množině 
znaků (proměnných). U asymetrického pří­
padu vycházíme z nezávislosti Y na X (tj. 
jeden krajní případ) a pojem statistické zá­
vislosti budeme specifikovat třemi různými 
možnostmi vyjádření neurčitosti (tři modely, 
tři východiska), a tedy tři různé míry. Vy-

1 Čtenář, který je obeznámen s korelačním po­
měrem. jistě okamžitě postřehl analogii — korelační 
poměr je založen na přesně stejném principu. Roz­
ptýlení (neurčitost) dat je zde však charakterizo­
váno součtem čtverců hodnot od průměru — to 
ovšem je možné jen u kardinálních znaků. Re­
dukce neurčitosti je provedena v dílčích souborech 
a výsledná formule je podílem této redukce a pů­
vodní hodnoty součtu čtverců.

5 Čísla fu považujeme za relativní četnosti celého 
souboru: můžeme je také považovat za pravdě­
podobnosti výskytu pro neomezené populace; v tom 
případě výpočet koeficientů provádíme ze vzorců 
obsahujících fij (nikoliv absolutní četnosti) nebo při 
dosazení výběrových absolutních četností nu dostá­
váme výběrové hodnoty koeficientu jako konzistent­
ní odhady koeficientů populačních.
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jádření redukce neurčitosti je u všech těchto 
případů obdobné.

3. Míry asymetrické statistické závislosti

A. Guttmanův koeficient prediktability

Koeficient vychází z následujícího modelu: 
Máme-li nějaké statistické rozložení6

fL f;,f*,fs; if*= i

a vezmeme-li jednu náhodně zvolenou sta­
tistickou jednotku, zvolíme toto predikční 
pravidlo pro neznámou (pro nás) hodnotu 
znaku jednotky: přiřadíme této jednotce mo- 
dální kategorii (tj. kategorii nejvíce četnou; 
jestliže máme více modálních kategorií, vo­
líme z nich náhodně).

Z modální predikce plyne jednoduchá 
míra neurčitosti: pravděpodobnost, že určíme 
kategorii respondenta chybně. (Čím menší 
je tato pravděpodobnost, tím menší je ne­
určitost v datech a tím větší šance na správ­
nou predikci; přístup je tedy až potud jistě 
rozumný.)

Při znalosti informace o X nebudeme 
určovat Y hůře. V krajním případě se nám 
dokonce může stát, že budeme určovat 
hodnotu Y zcela jednoznačně pomocí X — 
a to bude situace, kdy v jednotlivých dílčích 
souborech (podle X) už nemáme žádnou 
neurčitost, tj. predikujeme zcela bez chyb.

Například u souboru o 100 lidech víme, že 70 osob 
sleduje sportovní pořad v televizi a 30 neslodujo. 
Rozdělíme-li soubor podle pohlaví, můžeme zjistit, 
že nastane tato možná situace: ze 70 sledovaných 
mužů všichni sledují pořad, zo 30 žen žádná pořad 
nesleduje. Z těchto dat (z této informace) a z in­
formace, že osoba je muž, plyne jednoznačně 
závěr o hodnotě znaku sledování sportovního 
pořadu.

Označíme-li f.m četnost modální kategorie 
v marginálním rozložení znaku Y, pak chyba 
modální predikce má pravděpodobnost:

P (chyba predikce hodnoty znaku Y) = 1 — f.m 
(Chyby se dopustíme vždy, když prvek sou­
boru nepatří do modální kategorie.)

Jestliže obdobně označíme (fim = maxfij) 
a fm/i je největší (modální) četnost pro pod­
míněné rozložení znaku Y v j-té kategorii 
znaku X, dostáváme postupně:
P (chybné určení Y za předpokladu, že jed­
notka patří do i-té kategorie znaku X) = 
= 1 — fm/i, pro i = 1, 2, .. ., r.

Podle vzorce úplné pravděpodobnosti pak 
P (chybné určení hodnoty Y při znalosti 
kategorie znaku X) = 1 — £ fim

a redukce chyby je tedy:
(1 — f.m) — (1 — ŽL flm) = S flm — f.m

Můžeme tedy zavést koeficient modální 
predikce jako podíl redukované a původní 
neurčitosti:

^2) _  í ůjm — n m
o n. m

n.m, nim jsou postupně maxima marginálního roz­
ložení a řádkových rozložení absolutních četností, 
obdobně jako u relativních četností.

Vlastnosti koeficientu:
1. Koeficient nemá věcný smysl, je-li za­

stoupena pouze jedna kategorie znaku X; 
jeho hodnota je 0; v interpretaci však nelze 
chápat tuto hodnotu jako nezávislost, protože 
X není variabilní, její hodnota tudíž nemůže 
přispět k predikci hodnoty Y.

2. Koeficient není definován, jsou-li všechny 
údaje ze souboru dat seskupeny v jednom 
sloupci —• tj. nemáme žádnou chybu v určo­
vání hodnoty Y z marginálního rozložení, 
X proto nemůže už přinést žádné další 
zlepšení predikce.

3. Koeficient má hodnoty mezi nulou a jed­
ničkou včetně, přitom
a) Xy/x = 0, právě když znalost hodnoty X 
nepřináší žádnou informaci pro predikci Y; 
všechna řádková maxima jsou ve stejném 
sloupci jako marginální maximum; pod­
míněná rozložení v řádcích mají stejné 
modální kategorie; (existuje j0 tak, že 
fijo = fim pro všechna i).
b) Xy/x = 1 nastává, právě když znalost hod­
noty X umožňuje jednoznačnou predikci 
hodnoty Y, tzn., že v každém řádku tabulky 
je právě jedno nenulové pole;

4. Koeficient se nemění, změníme-li pořadí 
řádků nebo sloupců: je invariantní k per­
mutaci hodnot obou proměnných. To od­
povídá vlastnostem závislosti nominálních 
znaků.

Vlastnost 3a) nezaručuje ekvivalenci nu­
lové hodnoty a případu nezávislosti a to 
znamená, že z nulové hodnoty koeficientu ne-

c Značení f* je použito proto, aby nedošlo ke konfúzi se značením použitým výše.
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můžeme usuzovat na nezávislost obou pro­
měnných; jelikož taková ekvivalence je pro 
nás důležitá, koeficient není příliš používán. 
(Stejný nedostatek mají některé tradiční 
míry.) Dalším nedostatkem je, že v případě 
závislosti je citlivý pouze na maxima, a ne 
na celkovou strukturu tabulky.

Výhody koeficientu:
a) Vzhledem k snadno pochopitelnému mo­
delu a vlastnostem můžeme bez potíží určit, 
zda se nám jeho použití hodí, nebo ne.
b) Snadná spočitatelnost; algoritmus spočívá 
v zatržení řádkových maxim, jejich součtu 
a jednom úkolu dělení.
c) Jsou známy různé testy hypotéz pro tento 
koeficient.

Pro obecnou aplikaci v sociologických 
výzkumech jej nedoporučujeme. Uvádíme 
jej zde jednak proto, že jeho model je jed­
noduchý a snadno pochopitelný a může tedy 
sloužit jako úvod do problému pro ne­
matematiky, a hlavně proto, že jej velice 
často používáme pro rychlé ruční výpočty, 
které slouží k první orientaci v datech.

Obecná formule pro tento asymetrický 
koeficient:

(chyba při predikci Y\ /chyba při preclikA 
z marginálního I — Píci Y při znalosti |

rozložení / \ kat. X /

P (chyba při predikci Y z marginálního rozložení)
(3)

Tato formule, navržená Guttmanem, byla 
specifikována tím, že byl přesně navržen 
způsob predikce pro náhodně zvolenou 
statistickou jednotku. Z překladu této for­
mule lze heuristicky rychle odvodit smyslu­
plnost míry: je to relativní úbytek pravdě­
podobnosti chyby predikce při znalosti hod­
noty jiné proměnné; je to míra informačního 
přínosu jedné proměnné pro predikci pro­
měnné druhé.

B. Wallisův koeficient proporcionální predikce

Wallisův koeficient predikce je založen na 
stejném obecném modelu, vyjádřeném ve 
vzorci (3), pouze způsob predikce je jiný: 
známe-li rozložení četností v kategoriích 
znaku, pak predikujeme hodnotu znaku po­
mocí náhodného mechanismu (např. tabulky 
náhodných čísel) tak, že přiřazujeme vybrané 
jednotce hodnoty znaku s pravděpodobnostmi 
úměrnými zastoupení jednotlivých hodnot v po­
pulaci; tzn., že realizujeme rozložení pravdě­

podobností (nebo četností) a výsledek při­
řazujeme k dané jednotce. Tento postup 
opět uplatňujeme pro Y bud bez znalosti, 
nebo se znalostí X, spočítáme příslušné 
pravděpodobnosti chyb predikce a po dosa­
zení do obecného vzorce dostáváme koficient:

(4)

(5)

(6)

TY/X = i-Sf^ "

ZZ ~ (fij - fVj)2 

= 1

nZZ^— £n;

n2 — Z nj

Vlastnosti koeficientu:
1. V případě, že data jsou seskupena do 

jednoho řádku, nemá věcný smysl koeficient 
počítat, neboť X nemá, žádnou variabilitu 
a nemůže tedy přinášet žádnou informaci.

2. ty/x není definován pro případ, že se 
všechna data seskupí do jednoho sloupce 
tabulky (v takovém případě nemá smysl 
o závislosti mluvit).

3. ty/x nabývá hodnot mezi nulou a jed­
ničkou včetně; čím vyšší je hodnota koefi­
cientu, tím vyšší je prediktabilita Y z X, 
a tedy tím vyšší je i statistická závislost Y 
na X; přitom
a) Ty/x = 0, právě když X a Y jsou statisticky 
nezávislé, tzn., že fij = fj. fj pro všechna 
pole tabulky;
b) Ty/x = L právě když znalost hodnoty X 
jednoznačně umožňuje určení hodnoty znaku X.

4. Koeficient se nezmění permutací řádků 
nebo sloupců tabulky —■ to odpovídá práci 
s nominálními znaky a obecnému typu sta­
tistické závislosti.

K bodu 2. lze ještě dodat: koeficient nemá 
smysl, je-li jeden řádek nulový. V praxi 
postupujeme tak, že tento řádek z tabulky 
vynecháváme a redukujeme tabulku jen 
na ty řádky, které obsahují některé údaje — 
při analýze je ovšem třeba vzít takovou 
redukci hodnot znaku v úvahu. Při závislost- 
ních úvahách pracujeme s neúplnými znaky 
a naše informace o závislosti tedy není do­
konalá.

Z uváděných vzorců používáme pro vý-
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pocty většinou vzorce (6), vycházejícího 
z absolutních četností.7

Vlastnost 3a) je velice důležitá oproti 
obdobné vlastnosti koeficientu Xy/x, protože 
zde máme ekvivalenci nabývání nuly a sta­
tistické nezávislosti, tj., je tu splněna pod­
mínka b), kterou jsme kladli na obecné 
míry. Tím je také dána preference tohoto 
koeficientu vzhledem ke koeficientu Gutt- 
manovu. Výpočty vedoucí k tomuto koefi­
cientu jsou však zdlouhavější, a proto se 
tento koeficient nehodí pro rychlou analýzu 
a pro orientaci v datech v případě ručních 
výpočtů. Při použití počítače mu však 
dáváme přednost.

C. Informační míra asymetrické sávislosti

Tato míra je založena na modelu teorie 
informace. V předchozích případech jsme 
dosazovali do obecného vzorce Guttmanova, 
v němž se vyskytovaly pravděpodobnosti 
chyb. Nyní vezmeme zcela analogický obecný 
vzorec, v němž místo pravděpodobností 
chyby predikce budeme uvažovat obecnou 
míru neurčitosti (variability) statistického 
rozložení. Zobecníme-li takto základní vzorec, 
dostáváme:

(neurčitost v\ /neurčitost v rozložení Y 
rozložení Y / \ při znalosti X

(neurčitost v rozložení Y)

Místo redukce pravděpodobnosti chyby zde 
máme relativní úbytek obecné míry neurči­
tosti v distribuci proměnné Y při znalosti 
hodnoty X, a to v poměru k původní hodnotě 
neurčitosti.

Teorie informace zavádí jako míru ne­
určitosti tzv. entropii8 a informaci jako míru 
redukce entropie.

Po dosazení těchto pojmů do obecného 
vzorce dostáváme (viz Nikl, Perez (8]):

H(Y) - H(Y/X)
ÍY/X=---------H(Y)--------

I(X, Y) 
H(Y)

(8)

(9)

= 1_Xfi logfl.— ZEflllogflj (10) 
— Z f.j logf -i

= L _ Zni, log ni, — EEnu log nu 
nlogn— £n.jlogn.j

Vlastnosti tohoto koeficientu jsou stejné 
jako vlastnosti koeficientu ty/x (viz vlast­
nosti Wallisova koeficientu). Proto je jeho 
aplikace obdobná.

Navíc má tento koeficient — oproti před­
cházejícímu ■— jednu velkou výhodu — lze 
jej velice snadno spočítat, máme-li k dispozici 
tabulky hodnot k log k (pro přirozená čísla k) 
nebo — p log p (pro hodnoty p mezi nulou 
a jedničkou). Jsou-li tabulky takových 
hodnot dostupné,9 pak je výpočet velice 
rychlý —■ znamená pouze sčítání a odčítání 
tabulkových hodnot a jedno dělení.

4. Symetrická statistická závislost

V mnoha případech nemůžeme určit kauzální 
nebo časovou posloupnost proměnných, tj. 
roli nezávisle a závisle proměnné; v tom 
případě nemá asymetrické měření statistické 
závislosti žádný smysl a je navíc chybné 
a zavádějící. Proto musíme volit jiný přístup 
k problému a jiné východisko modelu.

Rozumný model symetrizace, který zde 
popisujeme, je v matematické statistice 
obecně považován za přijatelný a je také 
často používán. Pojem symetrické závislosti 
používáme tam, kde nevíme, která z obou 
zkoumaných vlastností předchází druhé, naše 
poznání neumožňuje určit mezi vlastnostmi 
vztah nezávislé a závislé proměnné, žádná 
z nich nemůže sloužit jako explanační faktor 
pro druhou apod.; zatímco mezi věkem 
a postojovými otázkami je směr možného 
statistického vztahu jednoznačný, u dvou 
postojových otázek to již tak snadné není. 
Symetričnost navíc může znamenat také 
vzájemné současné ovlivňování obou vlast­
ností. Model je založen na této úvaze: 
neznáme směr asymetrie, proto uplatníme 
predikci oběma směry a výsledky vážíme

7 Druhý tvar vzorce ukazuje souvislost s tzv. chí- 
-kvadrátovými nebo klasickými měrami, ve kterých 
vystupují stejné členy: čtverce rozdílů mezi zjiště­
nými a očekávanými četnostmi v polích, 
(fij — fi. f.j)2; tyto členy jsou v součtu násobeny va­
hami (1 — 2f2.j) /fje; tím vzniká určitý způsob nor­
malizace základních členů, fi. ve jmenovateli jsou 
váhy, které zrovnoprávňují řádky s nižším zastou­
pením se řádkami četnějšími.

8 S teorií informace zde seznamovat nemůžeme, 
čtenáře odkazujeme např. na práci Jasin (5). Uvá­
díme zde jen základní pojmy a značení: H(X) — 
entropie znaku X, H(Y) — entropie znaku Y,

H(X, Y) — entropie dvourozměrného rozložení 
vzniklého kombinací obou znaků X, Y. Informace 
X o Y (stejná jako Y o X) je I (X. Y) = H(X)+ 
+ H(Y) — H(X, Y)—H(Y) — H(Y/X) = ..neurči­
tost v Y“ — ..neurčitost v Y při znalosti X“. Dále 
definujeme H(Y) = — Sf.j log f.j atd.

9 Tabulky jsou publikovány v knize Kullback [6], 
jejíž ruský překlad z roku 1967 je u nás dostupný. 
Při výpočtech nerozhoduje základ logaritmu, proto­
že se faktor převodu při dělení zkrátí. Používáme-li 
však mezivýsledky pro jiné metody (např. testování 
hypotéz), pracujeme s přirozeným logaritmem.
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stejnou vahou (rovnou jedné polovině), tj. 
vezmeme náhodně jeden prvek, rozhodneme 
se s pravděpodobností 1/2, který směr pre­
dikce budeme uvažovat, a pro ten provedeme 
predikci. .

Místo pravděpodobnosti chyb predikce zde 
dostaneme očekávané hodnoty pravděpodob­
ností příslušný k oběma směrům.
P (chybná predikce jedné proměnné bez 
znalosti druhé) = 1 — 1/2 [P (správné 
pro X) + P (správně pro Y)]
Obdobné platí pro predikci jedné proměnné 
při znalosti proměnné druhé. Tyto hodnoty 
dosadíme do obecného Guttmanova sché­
matu.

A.SymetrizovanýGnMmanúv koeficient predikce

Vycházíme z modelu modální predikce a do­
stáváme koeficient, který charakterizuje míru 
symetrické statistické závislosti:

jsou pro danou populaci jednoznačně páro­
vány, tj. každý řádek a každý sloupec v ta­
bulce obsahuje právě jedno nenulové pole.

4. Není citlivý na libovolné permutace 
řádků a sloupců; zároveň nezávisí na změně 
role sloupcové a řádkové proměnné (toto je 
vlastnost symetrizace; u asymetrických koefi­
cientů neplatí).

5. Leží mezi Xy/x a Xx/y včetně.
Jeho výhodou je opět výpočetní jedno­

duchost, a proto se používá hlavně pro rychlé 
analýzy dat s ručními výpočty. Jeho ne­
výhodou je vlastnost 3a), ve které opět 
chybí ekvivalence mezi nabýváním nulové 
hodnoty a případem statistické nezávislosti 
obou znaků.

B. Symetrizovaný Wallisův koeficient propor­
cionální predikce

Zcela stejným postupem symetrizace, ale 
za použití modelu proporcionální predikce 
dostaneme vzorec

X = 1[2 fim + S fmj —• f m — fm.]
1 — ž(f.m + fm.)

(12) i ZE (fii-fi.f.i)2 \ fi.f.i /J (14)

fim značí relativní četnost (pro celé dvojrozměrné 
rozložení), která jo maximální v i-tém 
řádku;

fmj je maximální relativní četnost v j-tém 
sloupci;

fm. je maximum v marginálním rozložení ve­
ličiny X:

f.m je maximum v marginálním rozložení ve­
ličiny Y.

Obdobné značení přijmeme pro absolutní 
četnosti; po úpravách dostaneme vzorec 
vhodný k výpočtům:

_  E nim + E nmj —- n.m — nm.
2n — (n.m + nm.)

Vlastnosti koeficientu:

1. Nemá interpretační smysl, jsou-li data 
soustředěna v jednom řádku nebo v jednom 
sloupci.

2. Není definován pro případ, že data jsou 
soustředěna do jednoho pole tabulky.

3. Leží v uzavřeném intervalu [0, 1], 
přitom:
a) X = 0, když X a Y jsou nezávislé, ale neplatí 
opak (může mít nulovou hodnotu i v přípa­
dech statistické závislosti);
b) X = 1, právě když hodnoty obou znaků

i — i E f-- 4 E fj

Tento vzorec opět má tu vlastnost, že čtverce 
rozdílu očekávaných četností a skutečných 
četností v polích jsou váženy — váhy jsou 
nyní symetrické vzhledem k i a j (tj. k řádkům 
a sloupcům). Za výpočetní formuli může být 
vzat například některý z uvedených výrazů:

"22 (nnjj — nj.n.j)2 I———— I 
_____ ______ \ nj.nj, / 

2n2 — E n?. — E na
(15)

SS-(?- + ZS{;'-- Se-Se „„. 
_ _ __  (16)

2-Ef?.-Ěn

n(EE^ + EE^)-5n/-5^
' ni. nj. /

2n2 —In= — En]
(17)

Vlastnosti jsou stejné jako u X, jen s tím 
rozdílem, že místo 3a) mámo požadovanou 
ekvivalenci:
t — 0. právě když X a Y jsou statisticky 
nezávislé, tj. f,j = fj.fj pro všechny dvojice 
i, j (pole tabulky).
Při výpočtu vynecháváme prázdné řádky 
a prázdné sloupce.
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C. Symetrizovaný injormačni koeficient
Symetrizační princip můžeme použít i pro Navrhujeme zde koeficient, který z tohoto 
zobecněný vzorec (7) při dosazení entropií, přístupu vyplývá; jeho tvar udává vzorec:

r _ I(X, Y)
i [H(X) + H(Y)J

___ H(X,Y) 1
[ H(X) + H(Y)J

1_______ — XX fij logfij____ "
. — X fi-iogfi. — £ f.j logf. j

______ n log n — ££ nij log njj______  
2n log n — £ ni, log ni. — £ n.j log n.j

(18)

(19)

(20)

(21)

Vlastnosti jsou stejné jako u koeficientu t 
(viz předcházející oddíl). Výpočet koeficientu 
je však daleko snadnější, máme-li k dispozici 
tabulky k log k, resp. — p log p.

D. Koeficienty založené na statistice chi — 
kvadrát

Klasické koeficienty jsou zavedeny pro sy­
metrické vztahy a jsou založeny na zcela 
jiné myšlence než koeficienty predikční.

Vycházíme ze stavu nezávislosti a hledáme 
nějaké charakteristiky, které by porovnávaly 
stav daný v tabulce vzhledem ke stavu 
nezávislosti. K. Pearson navrhl „míru vzdá­
lenosti“, která je takovou charakteristikou, 
odrážející „vzdálenost“ dvourozměrného roz­
ložení četností v tabulce od rozložení, které by 
odpovídalo případu nezávislosti při stejných 
marginálních četnostech:

Z= = - 15 ,f" -^f'^ (22)

= ££ ------------ <23> ni.nj
n

= nÍ££-^------ 1) (25)
\ n^n, /

Za charakteristiku vzdálenosti u jednoho 
pole byl vzat výraz (fij — fj. fj)2; (v litera­
tuře se ovšem vyskytl}’- i jiné typy takovýchto 
vzdáleností).

Poslední dva vzorce používáme pro vý­
počet.

Veličinu chí-kvadrát musíme normovat 
tak, aby ležela mezi nulou a jedničkou 
včetně a aby tak vyhovovala požadavkům 
specifikovaným v § 2. Z mnoha pokusů 
o normalizaci je nejlepší koeficient Cramérův:

•y 2
Cr = . . Z , — (26) 

n . min (r— 1, s — 1)
Při výpočtu vynecháváme nulové řádky 
a sloupce a tím také snižujeme příslušné 
hodnoty r a s ve vzorci.

Vlastnosti koeficientu:
1. Nemá věcný smysl, jsou-li data sou­

středěna pouze v jednom sloupci nebo pouze 
v jednom řádku.

2. Není definován pro nulové sloupce nebo 
řádky — ty musíme při výpočtu vynechávat; 
s takovou podmínkou je definován vždy, 
když min (r— 1, s— 1) není nula, to zna­
mená, že data nejsou soustředěna v jednom 
řádku nebo sloupci.

3. Leží mezi nulou a jedničkou včetně pro 
libovolné rozměry tabulky:
a) Cr = 0, právě když X a Y jsou nezávislé, 
b) Cr = 1, právě když je závislost kompletní.

4. Je invariantní vzhledem k libovolné 
permutaci sloupců nebo řádků, je symetrický 
vzhledem k přehození řádkové a sloupcové 
proměnné.

Tento typ koeficientů nelze doporučit, 
protože nejsou založeny na dobře interpreto- 
vatelném modelu. Je to názor, který se v lite­
ratuře vyskytl již v základní práci Goodman- 
Kruskalově [2], Chí-kvadrát je statistika, 
která je jednoznačně přijata pro testování 
nezávislosti a jako taková se dobře osvědčila 
(v poslední době se však i od ní upouští 
na úkor statistik teorie informace). Testování 
nezávislosti a měření závislosti jsou však
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dvě zcela různé úlohy, které vycházejí ze 
zcela různých vstupů do výzkumu a z jiných 
modelů analýzy dat.

Vzhledem k tomu, že volba základní 
charakteristiky odpovídá nulové hypotéze 
nezávislosti, ale neodpovídá modelu měření 
statistické závislosti, je cesta adaptace cha­
rakteristiky y2 na koeficient statistické zá­
vislosti dosti libovolná. Výsledkem různých 
adaptací je dnes celá řada různých normali­
zací této charakteristiky (Pearsonův norma­
lizovaný koeficient, Čuprovův koeficient, 
výše uvedený Cramérův koeficient a další). 
Libovolnost zavedení konečného tvaru a ab­
sence základního modelu vede k neurčené 
interpretaci. Zatímco ostatní v článku uve­
dené míry mají interpretaci přirozenou a je­
jich numerické hodnoty mají jednoznačný 
obsah, chí-kvadrátové míry sice slouží k ori­
entaci v datech, ale obsah jim přiřazovat 
nelze. Proto je také nesprávné nasazovat je 
v dalších složitějších modelech, do nichž 
musí vstupovat míry s přesně určeným 
obsahem (aby tak byly zajištěny například 
návaznosti měr v kauzálních sítích apod.).

Nedostatek klasických měr je patrný také 
z toho, že neodpovídají požadavkům asy- 
metričnosti a symetričnosti a že tyto dva 
případy nerozlišují.

Chí-kvadrátové míry jsou dnešním vý­
vojem matematické statistiky překonány; 
jistě splnily svoji roli ve vývoji statistického 
myšlení, v dnešní době by ale bylo vhodné 
nahradit je měrami, které odpovídají mo­
derním požadavkům metodologie práce s daty 
a jsou prověřeny jak matematickostatistickou 
teorií, tak praxí výzkumů.

Důvodem pro jejich zachovávání nemůže 
být to, že jsou (nebo byly) běžně v našich 
výzkumech používány a že je třeba je 
udržet pro srovnatelnost — v našich výzku­
mech sice používány byly, ale v tak různých 
nejednotných variantách, že srovnatelnost 
hodnot stejně není možná.

Ani argument, že vystupují ve většině 
současných programů, neobstojí; je totiž 
velmi snadné doprogramovat nebo přepro­
gramovat vzorec, neboť východisko (kon- 
tingenční tabulka) zůstává stejné.

5. Numerické příklady10

Při sociologickém šetření postojů (viz po­
známka 10) byly položeny (mimo jiné)

10 Oba příklady jsou vzaty z výzkumů postojů 
obyvatel historického jádra města Tábor k otázkám 
rekonstrukce, jehož autory jsou J. Linhart a M. 
Matějů. J. Linhartovi zde chceme vyjádřit podě-

například otázky, které vyústily v následu­
jící znaky:
A. Podle názoru respondenta je modernizace 

a přestavba historické části města 
1 — nezbytná,
2 — mohla by počkat,
3 — respondent neví, nerozumí těmto 

věcem.
B. Podle názoru respondenta by měla pře­

stavba probíhat tak,
1 — aby se většina obyvatel mohla vrátit 

do této čtvrti,
2 — že by se většina obyvatel měla 

stěhovat jinam,
3 — respondentovi na tom nezáleží,
4 — respondent neví.

C. Respondent říká za sebe a svou rodinu, 
že po skončení restaurací bytového fondu: 
1 — by se chtěli v každém případě vrátit 

do svého domu,
2 — by chtěli bydlet v téže čtvrti (bez 

ohledu na dům),
3 — by dali přednost jiné čtvrti,
4 — by se odstěhovali mimo Tábor,
5 — je pro jiné řešení (např. dům dů­

chodců),
6 — neví, je mu to jedno.

D. Nejvyšší dosažené vzdělání respondenta: 
1 — nedokončené základní,
2 — základní,
3 — základní a vyučen,
4 — střední bez maturity,
5 — střední všeobecné s maturitou,
6 — střední odborné s maturitou,
7 — vysokoškolské.

Především si uvědomíme, že koeficienty 
spočítané pro uvedené soubory respondentů 
(viz níže), jsou výběrové koeficienty pro 
celou populaci, tzn., že bychom měli s koefi­
cientem počítat i jeho konfidenční interval, 
abychom mohli výsledek zobecnit. Tento 
problém jsme však neřešili a nebudeme se jím 
zabývat ani zde.

V tabulkách jsou sloučeny některé ka­
tegorie; zajímá nás například vztah k histo­
rické části města (taková úprava kategorií 
se dělá často: data se získávají pro jemnější 
znak — podrobnější dělení kategorií — který 
se pak účelově zúží, někdy i několika způ­
soby). Respondenti, kteří neodpověděli ale- 

kování za laskavé poskytnutí dat, pomoc při jejich 
výběru a průběžný zájem o tento text. Slučování 
kategorií bylo provedeno autory.
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spoň na jednu otázku, nebyli do tabulky 
zařazeni.

Tabulka 2 je příkladem asymetrického 
vztahu „vzdělání — názor na modernizaci 
města“.

Tabulka 2.
Nutnost přestavby

Vz
dě

lá
ní

D
A

Celkem
1 2 3

(L2) ¿133 32 24 189

(3, 4) /129 26 13 168

(5, 6, 7) ¿58 6 0 64

Celkem ¿320 64 37 421

A. Výpočet hA/D:

1. Zatrhneme maxima v řádcích

nim = 133 n2m = 129 n3m = 58
n.m = 320 n = 421 .

2. Spočteme

Snim = 133 + 129 + 58 = 320

3. Dosadíme do vzorce (2)

. _  Xnim — n.m _  320 — 320
X/S - - 421^320 =

B. Výpočet tAiD:

1. V každém řádku nalezneme součet čtverců 
absolutních četností, SSnjj ; tato čísla dělíme 
příslušnými řádkovým součty:

— 2 ^ = (1332 + 322 + 242) : jgg = 
ni
= 102,058

— V n* = (1292 + 262 + 132) . 168 =
n2 '
= 104,083

— X n= = (582 + 62 + O2) : 64 = 53,125 
03

2. Součet těchto čísel (259,266) násobíme n:

259,266 X 421 = 109 150,986 = 109 151

3. Součet čtverců marginálního řádku:

Sni = 3202 + 642 + 372 = 107 865
a

n2 = 4212 = 177 241

4. Dosadíme do vzorce (6):

109151 — 107 865 1286
TA,D ~ 177 241 — 107 865 - 69376 ~ ’

C. Výpočet informační míry;

1. Nejprve získáme příslušné hodnoty n log n 
pro dosazení do vzorce (11); zde je pro 
názornost vypisujeme do tabulky (ve vý­
počtech pak tato čísla přímo načítáme na 
kalkulačce):
2. Z těchto čísel získáme Snij log ntj jako 
součet hodnot ve vnitřní části tabulky. 
Tato hodnota se rovná 1828,8201.

Sni log ni. = součet v posledním sloupci 
(bez pravého dolního rohového pole tabulky, 
která odpovídá hodnotě n) = 2117,6846.

Sn.j log n.j = součet posledního řádku 
(opět bez pravého dolního rohového pole 
tabulky) = 2245,6352.

n log n je v pravém dolním rohovém poli: 
2543,9484

3. Dosadíme do vzorce (11)

^DIA = 1 —•
2117,6846 — 1828,8201
2543,9484 ^2245,6352

= 1 — 0,9683 = 0,0317

Tabulka 3.

650,4164 110,9035 76,2733 990,6902

626,9158 84,7105 76,2733 721,6264

235,5057 10,7506 0,0000 266,1685

1 845,8627 266,1685 133,6040 2 543,9484
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Tabulka l.

B-Názor na návrat 
ostatních 
obyvatel

C — Přání nastěhovat se zpět
Součet

1 2 3 (4, 5, 6)

1 /198x 1 31 X 20 15 264 x

2 12 8 /2! 6 47

(3,4) /38 25 24 X 20 x 107

Součet /248 64 65 41 418

Všechny míry mají nízké hodnoty. Názory 
na přestavbu jsou na vzdělání statisticky 
velmi málo závislé; při další interpretaci 
zjistíme modální volbu společnou všem sku­
pinám — tato kategorie je dominantní.

Příklad symetrické asociace (viz tabulku 4)

A. Výpočet X:

1. Zatrhneme řádková maxima v tah. č. 4 (j_ )

nim — 198 n2m == 21 n3m == 38
Snim = 257

2. Křížkem označíme sloupcová maxima (x)

nmi = 198 nm2 = 31 nm3 = 24
Umí — 20 žinnij = 273

3. Zjistíme maxima u marginálních rozložení 

nm. = 264 n.m = 248

4. Dosadíme do vzorce (13)

257 + 273 — 264 — 248 18
- 2 x 418 — 264 — 248 324

= 0,05555 = 0,0556

B. Výpočet t:

Postup asymetrického případu aplikujeme 
dvakrát, a to jednou ve směru řádků a poté 
ve směru sloupců:

1. a) Spočítáme výrazy:

— Z nh = 40 790 : 264 = 154,51 
ni.

— Z n’ = 685 : 47 = 14,57
H2.

— Z n3| = 3 045 = 107 = 28,46 
n.3

b) Obdobně:

— Z Dn = 164.48 - Z ni» = 25,78n.i n.2 '

— Z ^ = 29,49 — Z nů = 16,12n.3 n.4

c) Součet výrazů ad a) a ad b) je roven 
197,54 + 235,87 = 433,41

2. Nalezneme součet čtverců marginálních 
rozložení

a) u součtového řádku (veličin)7 Y):

Sn.j = 71 506

b) u součtového sloupce (veličiny X):

SnL = 83 354

c) dohromady součet marginálních čtverců:

154 860

3. Výsledek dosadíme do vzorce (17):

_ 418 x 433,41 — 154 860 _
T ~ 2 x 174 724— 154 860 ~

= l6^3? = 0J352
194 588

C. Výpočet £:

1. K výpočtu informační míry musíme získat 
nejprve příslušné hodnoty n log n; opět je 
pro názornost vypíšeme do tabulky č. 5.
2. Z tabulky 5 zjistíme SSnij log njj = 
= 1730,0940
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Tabulka 5.

1047,0759 106,4536 59,9146 40,6208 1472,0506

29,8189 16,6355 63,9350 10,7506 180,9569

138,2283 80,4719 76,2733 59,9146 499,9927

1367,3303 266,1685 271,3351 152,2565 2522,8312

Sn.j log n.j = 2057,0904
Sni. log m. = 2153,0002 

n log n = 2522,8312

3) Uvedené dílčí výsledky dosadíme do 
vzorce (21):

Š= 2 1 —
2522,8312 — 1730,0940

2 x 2522,8312 — (2153,0002 + 2057,0904) = 0,1028

D. Cramérův koeficient Cr:

1. Nejprve spočítáme chí-kvadrát podle 
vzorce (25); přitom ovšem nám stačí získat 
hodnotu v závorce, neboť n se ve vzorci (26) 
zkrátí: x2 = n (1,2161 — 1)

2. Cr = = 0,1080
2 - ------

6. Závěry

V článku jsme se nezabývali problematikou 
konfidenčních intervalů, ani jsme neuváděli 
testy hypotéz; vzorce a výpočty jsou pro 
tyto úlohy dost obtížné a jen zřídka je 
budeme počítat ručně. Zájemce odkazujeme 
na uvedenou statistickou literaturu (Good­
man, Kruskal [4], Zvárová [9]) a na odbornou 
statistickou konzultaci.

Pro nedostatek místa jsme se také neza­
bývali případem čtyřpolních tabulek, u nichž 
se vzorce pro jednotlivé míry značně zjedno­
dušují a v různých případech i ztotožňují. 
Problém čtyřpolních tabulek však zasluhuje 
samostatné zhodnocení, protože používáme 
různé modely, odpovídající různým pozadím 
dichotomizace znaků.

Při aplikaci zásadně odlišujeme symetrické 
a asymetrické vztahy. Doporučujeme ne­
používat chí-kvadrátové normované míry. 
Podle našeho názoru a zkušeností je pro 
rychlou analýzu a orientaci v datech nejlepší 
koeficient X, pro výpočet na počítači však 
vždy volíme t nebo £. Výběr mezi těmito 
koeficienty je vcelku libovolný. Jak pre­
dikční model, tak model teorie informace

je heuristicky snadno pochopitelný a oba 
vyhovují našim požadavkům. Koeficienty 
vycházející z teorie informace mají však 
dříve uvedenou výhodu, totiž že při možnosti 
použití tabulek jsou snadno spočitatelné. To 
je důležité obzvláště v případech, kdy pro­
vádíme významové úpravy tabulek (sluču­
jeme kategorie), přepočítáváme jednotlivé 
míry spočítané pro původní tabulku počí­
tačem a potřebujeme zaručit srovnatelnost 
s jinými tabulkami či s tabulkou původní. 
U těchto koeficientů jsou zajímavé také 
mezi výpočty, které lze použít i pro jiné 
úlohy analýzy dat.

Asymetrické a symetrické koeficienty stej­
ného typu jsou srovnatelné, protože jsou 
srovnatelné i jejich modely, z nichž plyne 
věcný smysl koeficientů. Je však samo­
zřejmé, že nelze srovnávat t u jedné tabulky 
a £ u druhé tabulky, ať jde o stav symetrický 
nebo asymetrický.

V praxi většinou při výpočtech vynechá­
váme kategorie „odmítnutí odpovědi“, „chy­
bějící informace“ atd. a počet jednotek 
vstupujících do tabulky tak snižujeme.

Všechny asymetrické míry, které jsme zde 
uváděli, mohou sloužit také pro účely kom­
parace (v úloze jednoduché stratifikace), 
tj. srovnávání dílčích souborů. Malé hodnoty 
měr značí vysokou podobnost statistických 
rozložení znaků v dílčích souborech, vysoké 
hodnoty velkou nepodobnost (heterogenitu). 
Koeficient X může sloužit také jako charak­
teristika pro testování hypotézy, která říká, 
že všechny dílčí soubory mají stejnou mo- 
dální kategorii.
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PeaiOMe
PmeraK H. - PmcraKOBa B.: IlaMepenMe 
CTaTHCTHSCCKoň 3aBHCHMOCTH HOMUHaJIbHMX 
npit3iiaKOB

B aitajinae coitnojioriiiecKnx «annbix cymecTBCH- 
nyio pojib nrpaeT noiiHTne CTaTncTnqecKoií saun 
CHMOCTH M«K«y OT«CJIbHbIMII nepeMGHHUMH. Ct3- 
TbH bbormt b npoójieMaTHKy nsMepeniiH crarn- 
CTnqecKoii aaniicHMOCTn HOMiiHajibiiMX npiisna- 
kob (accopnapun KasecTBeinibix nepcMeHHMx). He 
«HcuyTiipyeTCH oTHomenne CTariicTiriecKon aa- 
bhciimoctu n Kaysajibnon peajibHon sasncHMOCTH; 
aBTopM cocpe^oTOHUBaioT cBoe BHHMaHne na mo- 
flcnnx, KOTopwe npiiBOflHT k nsMepenmo c.Tarn- 
ctipicckoh aamicMMOCTn.

Bo BTopoň načni BMcKaabiBaiOTCH obmne Tpe- 
boBarinn k MepaM cTaTiicTiniecKOH sasncHMOCTH 
H OIIHCMBaeTCH HpiinpiIH, KOTOpMH M0HI6T CJiy- 
JKHTb OC1IOBOH «JIH OTgeJIbnMX M6p. TpeTbH HaCTb 
bbo«ht MOfleJib «jih nsMepeHiiH accnuerpiniecKoro 
CTaTncTirnecKoro OTHonrenirn. 3tot npnHiinn bbcji 
Tymián khk oTHOCHTejibHoe yMcnbuienne nepo- 
hthocth omnÓKii iipcgnKpHH nepeMeHHoii Y npn 
3HaHirn iiejinHHHM nepeMennoM X b cpaBneimn 
C BOpOHTHOCTbIO OIHHOKH UpefllIKipin Y 6c3 3Ha- 
huh X ,3to oTHonienne, npmienennoe k kohkpot- 
non KOHTnnrenTHOH Taónnpe, hbjihctch Mepoň 
CTaTHCTHHeCKOH 3aBHCMMOCTH acciiMCTpnnecKoro 
mna. Ecjih mm b ary MOflem nocTanuM MogaJibHoe 
npe«HKii,noHHoe npanHJio, mm nojiynmi ýopMyjiM 
(1), (2); X Tymiana HBnHercn xopomcH Mepoň 
«jih ómctpmx anajinsos, ono jiotko nojmaeTCH

no«cHiiTaniiio, ogHaKO y Hero tot ne^ocTaTOK, 
hto nyjieBan BejiHHHHa KoaýýnmieHTa ne 3kbh- 
BaJieurna coctohhhio craTHCTUHecKoň nesasHcn- 
MOCTH, HO TOJIbKO COCTOÍIHIHO TOHvgeCTBa MOgaJIb- 
hmx KaTeropmi OT«eJibHMx cyónonyjtnpiiH. Hpo- 
noppHOHaJibHoe npe«MKHHOHHoe npaBiino, npn- 
M6HeHiioe b obmeii ýopuyjie (3), npuBO«HT k ýop- 
MynaM (4), (5), (6). KoaýýnuneHT Bajunica t yme 
nBJínercH npeBocxogHoii Mepoň, Koropaa bm- 
HojiHHeT Bce anpiiopn iiocraBjieuHMe TpeóoBamiH.

Ecjih oSoOnyiTb npnnpnn (3) b BMpaiKeHHbie 
gpyrHM obpasoM HoonpeneaenHocTn b flanuMx, 
to mm nojiysiiM obmyto ýopMyjiy (7). Hpn no- 
CTaBJíennn 3HaHemni onTponmi (nonaTiie reopnn 
HH^opnamni) mm nojiynnM ýopMyaM (8) — (11) 
jtuíi í. 3tot KoaýýimnoHT BMnojinneT oannaKOBO 
xopomo Bce TpeboBannn k cTaTMCTiriecKHM MepaM 
3aBHCHM0CTH HOMMHaJIbHMX npHSHaKOB. CBepX 
Toro oh objíanaeT tcm npenitymecTBOM, uto «o- 
BOJibHO npocTO ero mo®ho nogCHHTaTb, ecJin 
b HanieM pacnopniKennii ecib TabjínuH 3Ha*ieHnů 
k log k n fljin ecTecTBenHbix k hjih p log p rjih p 
H3 IIHTCpBana (0,1).

HeiBepjaH nacTb bbo«iit ripiiHniin citMMeTpn- 
aaipin npe/uuecTByiomnx Mogejieň na cjiynaii, hto 
mm ne b coctohhhh oupegcJiiiTb HanpaBJíeHHe 
accMMeTpnHecKoro oTHomeniiH. 3tot npnnunn 
npHBOflHT K CMMMeTpH3IipOBaHHOMy X [ýopMyjIM 
(12), (13)] n k CHMMeTpinnipoBaHHOMy t [ýopMyjiM 
(14)—(17)]; aBTopM npejyiaraioT TaxHte anajio- 
rmiHyio CHM.MeTpnsaumo jpin KoejajiHiineHTa í 
[ýop.MyjiM (18)—(21)]. npeiiMymeciBO nocjieg- 
nero KoaýjiHpHeHTa saKtnoHaeiCH ohhtb b npo- 
CTOM BO3MOHÍHOCTII nOflCHHTaHHH npll H3JIHHHH 
AOCTyHHMx cooTBeTCTByioniMX Taójinn. llpeiiMy- 
BieCTBa H HeflOCTaiKlI CHMMeTpHSnpOBBHHNX Mep 
aHajioriniHM naň n y Mep accnMeTpiniecKnx.

Kjiaccnn,iecKne chí-KBaapaTHbie MepM Bcrarbe 
npeflCTaBJíenbi tojibko KoaýýnpneHTOM Kpanepa 
(26). Ho ohu «jih Hccjie«OBaTejibCKux nejieň ne 
pCKOMeH«yiOTCH, TaK K3K OHII HO IIMGIOT HHK8K0H 
ochobhoh MOfleJin, KOTopan «anajia 0m bosmožk- 
HOCTb HX TOJIKOBOH, ORIIHaKOBOM II T3K®6 HpO- 
ctoíí HHTepnpeTaitnu.

IlnraH Hacrb co«epžKHT n 'nicjiennHc npmiepH 
Hnít accHMOipimecKoro n cnMMeTpnHecKoro ot- 
HonieHHH nepeMeHHHX. Hn tgctm runoTes o ko- 
atjxfnmHeHTax hm nx «OBepinejibHMe m HTepBajiM 
HO npHBOflHTCH.

Summary
Řehák J. - Řeháková B.: Measurement of 
Statistical Dependence Among Nominal Va­
riables

The notion of statistical dependence (associ­
ation) among individual variables plays a 
substantial part in the analysis of sociological 
data. The paper introduces into problems of 
measuring the statistical dependence of 
nominal variables (association of qualitative 
variables). The relation between statistical 
dependence and causal real dependence is not 
discussed; the authors pay attention to models 
leading to the measurement of statistical 
dependence.

Part 2 presents general demands on the 
measures of statistical dependence and de-
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scribes the principle that may form the basis 
of the separate measures.

Part 3 introduces a model for measuring 
the asymmetrical statistical relation. This 
principle was introduced by Guttman as the 
relative decrease of the probability of error in 
predicting the variable Y if the value of the 
variable X is known, relative to the prob­
ability of error in predicting Y if X is not 
known. This relation applied to the concrete 
contingency table is the measure of statistical 
dependence of the asymmetric type. If the 
modal prediction rule is introduced into this 
model, we get the formulas (1), (2); Guttman’s 
A is a good measure for quick analyses, it is 
easily computable; its disadvantage, however, 
lies in the fact that the zero value of the coef­
ficient is not equivalent to the statistical 
independence but only to the case in which 
the modal categories of individual sub­
populations coincide. The proportional pre­
diction rule applied in the general formula (3) 
leads to the formulas (4), (5), (6). Wallis’ 
coefficient t then represents a perfect measure 
fulfilling all a priori demands.

If principle (3) is generalized to differently 
expressed uncertainties in the data, the 
general formula (7) is obtained. By sub­
stituting the values of entropy (a concept of 
the theory of information), we get the for­
mulas (8) — (11) for Ç. This coefficient equally 
well fulfils all the demands on the statistical

measures of oependence of nominal variables. 
Moreover, it has the advantage that it may 
be obtained by rather simple computation 
if the tables of values k log k (for natural k> 
or p log p (for p from the interval (0,11 
are available.

Part 4 introduces the principle of the 
symmetrization of the preceding models for 
the case of our inability to determine the 
direction of the asymmetrical relation. This 
principle leads to a symmetrized X [formulas 
(12), (13)] and to a symmetrized t [formulas 
(14)—(17)]; the authors also suggest a similar 
symmetrization for the coefficient Ç [formulas 
(18), (21)]. Again, the advantage of the last 
coefficient lies in a simple computability if 
the respective tables are available. The 
advantages and disadvantages of symmetrized 
measures are analogous to those of asym­
metrical measures.

In the present paper, the classic x2 measures 
are represented only by Cramér's coefficient 
(26). They are, however, not recommended 
for research purposes, since they have no 
basic model facilitating their reasonable, 
unique and simple interpretation.

Part 5 contains numerical examples illu­
strating asymmetrical and symmetrical rela­
tions of the variables. Tests of hypotheses on 
coefficients and their confidence intervals are 
not mentioned.
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